В течение двух с половиной столетий внимание алгебраистов было приковано к задаче о выводе формулы для решения общего уравнения 5-й степени. Надо было выразить корни этого уравнения через его коэффициенты с помощью арифметических операций и извлечений корней (решить уравнение в радикалах). Лишь в начале XIX в. итальянец П. Руффини и норвежец Н. Абель независимо друг от друга доказали, что такой формулы не существует. Эти исследования были завершены французским математиком Э. Галуа, методы которого позволяют для каждого данного уравнения определить, решается ли оно в радикалах.
Один из крупнейших математиков – К. Гаусс выяснил, при каких условиях можно построить циркулем и линейкой правильный n-угольник: вопрос оказался связанным с изучением корней уравнения x>n = 1. Выяснилось, что эта задача разрешима лишь в случае, когда число n является простым числом Ферма или произведением нескольких различных простых чисел Ферма (простыми числами Ферма называются простые числа, представимые в виде
; до сих пор известны лишь пять таких чисел: 3, 5, 17, 257, 65 537). Тем самым молодой студент (Гауссу было в то время лишь 19 лет) решил задачу, которой безуспешно занимались ученые более двух тысячелетий.
В начале XIX в. были решены основные задачи, стоявшие перед алгеброй в первом тысячелетии ее развития. Она получила самостоятельное обоснование, не опирающееся на геометрические понятия, и, более того, алгебраические методы стали применяться для решения геометрических задач. Были разработаны правила буквенного исчисления для рациональных и иррациональных выражений, выяснен вопрос о разрешимости уравнений в радикалах и построена строгая теория комплексных чисел. Поверхностному наблюдателю могло показаться, что теперь математики будут решать новые и новые классы алгебраических уравнений, доказывать новые алгебраические тождества и т.д. Однако развитие алгебры пошло иным путем: из науки о буквенном исчислении и уравнениях она превратилась в общую науку об операциях и их свойствах.
«Алгебра есть не что иное, как математический язык, приспособленный для обозначения отношений между количествами». И. Ньютон
После создания теории комплексных чисел возник вопрос о существовании «гиперкомплексных чисел» - чисел с несколькими «мнимыми единицами». Такую систему чисел, имевших вид a + bi + cj + dk, где i>2 = j>2 = k>2 = -1, построил в 1843 г. ирландский математик У. Гамильтон, который назвал их «кватернионами». Правила действий над кватернионами напоминают правила обычной алгебры, однако их умножение не обладает свойством коммутативности (переместительности): например, ij = k, a ji = -k..