Красота в квадрате Как цифры отражают жизнь и жизнь отражает цифры (Беллос) - страница 42

В случае ряда других городских индикаторов показатель степени меньше 1, а это значит, что рост города может привести к сокращению следующих показателей на душу населения:

количество автозаправочных станций = k (численность населения)>0,77

длина электрических кабелей = k (численность населения)>0,83

При увеличении размера города в два раза количество автозаправочных станций и длина электрических кабелей на душу населения могут сократиться на 15 процентов. Другими словами, в городах имеет место математически прогнозируемая экономия от масштаба — и это происходит во всем мире. «Японские города развивались абсолютно независимо от европейских и американских городов, тем не менее закон масштабирования действует [в каждой стране], — говорит Уэст. — Это наводит на мысль о существовании некой универсальной движущей силы». Уэст убежден, что степенные законы действуют в городах по той же причине, что и в мире животных. Город — это и транспортная сеть. Подобно тому как кровеносная система обеспечивает перемещение крови по толстым, а затем по все более тонким сосудам, города тоже распределяют ресурсы по сети разветвляющихся дорог, кабелей и труб.

Мы сами решаем, где нам жить, на что тратить деньги и как расходовать свое время. Тем не менее, если взглянуть на наше коллективное поведение сквозь призму чисел, становится очевидным, что оно вполне предсказуемо и подчиняется простым, взаимно совместимым математическим законам. Мы так распределены по земному шару, что в 30 процентах больших и малых городов численность населения начинается с единицы, размер городов в целом обратно пропорционален их номеру в упорядоченном по численности населения списке и все города являются версиями друг друга, образованными по принципу степенного масштабирования. Возможно, в чем-то этот мир сложен. Но в чем-то — достаточно прост.

Числа — незаменимый инструмент, помогающий нам понять мир, в котором мы живем. То же самое можно сказать о фигурах. Именно изучение одной из фигур дало начало развитию западной математики.

3. Любовные треугольники

Автор исследует треугольники. Призрачный мир древнегреческой геометрии приводит его сначала к колодцу, а затем на вершину самой высокой горы мира

Роб Вудолл — коллекционер геодезических знаков. В этом он преуспел как никто другой. Геодезические знаки представляют собой бетонные сооружения высотой до пояса, которыми обозначаются базисные точки национальной геодезической сети, использовавшейся в свое время картографами и топографами. Если вы когда-либо бывали в сельских районах Великобритании, то наверняка видели эти сооружения. Они, как правило, расположены на вершинах холмов — как трофей в конце восхождения. За период с 1936 по 1962 год Управление геодезии и картографии установило более 6500 таких знаков, 6200 из них сохранились до настоящего времени. По посещению, или «коллекционированию», геодезических знаков проводятся соревнования. На счету 50-летнего Роба Вудолла уже 6155 знаков — другими словами, почти все