Маленькая книга о чёрных дырах (Габсер, Преториус) - страница 28

Чтобы еще лучше понять геометрию внутренне искривленных поверхностей, надо задуматься о треугольниках, стороны которых образованы геодезическими. В плоской двумерной геометрии сумма углов при вершинах любого такого треугольника будет равна 180°. При наличии положительной внутренней кривизны, такой как кривизна земной поверхности, сумма углов будет больше 180°. Оказывается, есть такие искривленные поверхности (похожие по форме на шейку песочных часов), на которых треугольники, составленные из геодезических, будут иметь сумму углов меньше 180°. Это случай отрицательной внутренней кривизны.

Теперь, когда мы обрисовали главные идеи дифференциальной геометрии, посмотрим, как они обобщаются на четырехмерное пространство-время в общей теории относительности.

Используемая в ней метрика немного сложнее, чем метрика на поверхности Земли, так как задачи у этих метрик разные: вторая определяет расстояние между двумя пространственно разделенными событиями, а первая – время, протекшее между событиями, разделенными во времени. Временной интервал между разделенными во времени событиями в точности равен времени, протекшему для свободно падающего наблюдателя между моментами наблюдения одного и другого события в предположении, что оба события происходят в одной и той же точке в системе отсчета наблюдателя. Осмыслить пространственно разделенные события сложнее: по определению эти события разделены таким расстоянием, что наблюдатель, движущийся медленнее света, не может наблюдать их оба в одной и той же точке в своей системе отсчета. Для статического (то есть не изменяющегося со временем) пространства-времени можно определить расстояние между пространственно разделенными событиями через продолжительность распространения сигнала от одного из них до другого. Для общей теории относительности понятие метрики служит основополагающим: решения уравнений Эйнштейна не что иное, как метрика пространства-времени. Все наше обсуждение черных дыр в главах 3 и 4 будет строиться на особых метриках пространства-времени, известных как решения Шварцшильда и Керра.

Как мы уже упоминали, метрика в общей теории относительности определяется десятью функциями; одна из них является, в сущности, функцией хода, из которой можно определить скорость течения времени. Еще одна функция из десяти показывает, как «раскрывается» пространство в присутствии массивных тел. Остальные восемь функций описывают различные искажения пространства-времени – как в «комнате смеха», где ваше отражение растягивается то в одном, то в другом направлении. Все эти десять функций можно объединить в так называемый метрический тензор, обозначаемый обычно