Когда мы переходим от двумерных поверхностей к четырехмерному пространству-времени, кривизна количественно начинает выражаться более сложно, но, в принципе, ее концепция остается той же: ответ на вопрос об углах, под которыми встречаются геодезические, может отличаться от случая плоского пространства, и это отличие выражается так называемым тензором кривизны Римана. Тензор Эйнштейна G>µν – это урезанная версия тензора кривизны Римана, сохранившая только те аспекты кривизны пространства-времени, на которые воздействует присутствие массы (или энергии, количества движения, давления, сдвигового напряжения).
По крайней мере в рамках современных представлений в пространстве-времени не может искривляться ничего, кроме самих его четырех измерений. В общей теории относительности «правильные» вопросы о кривизне – это те, на которые можно ответить на основе геодезических в четырехмерном пространстве-времени. И нам нет нужды думать о том, чтобы «срезать» траектории движения путем выхода в какую-то внешнюю геометрию – как мы могли бы срезать путь из Вашингтона в Сан-Франциско, построив подземный туннель. Обычно, когда мы пытаемся изобразить искривленное пространство-время на рисунках, иллюстрирующих влияние тяготения, мы изображаем его как двумерную мембрану, которая прогибается в сторону массивного тела. Такое изображение предполагает существование дополнительного измерения, в которое и прогибается мембрана.
Этот способ иллюстрирования вполне приемлемый, и не в последнюю очередь потому, что он позволяет визуализировать небольшое «раскрывание» пространства в окрестности массивного тела. Но насколько нам известно, реальный мир имеет именно четыре измерения, и четырехмерное пространство-время искривляется само по себе, без привлечения какого-либо пятого измерения[4].
Уравнения поля Эйнштейна G>µν = 8πG>NT>µν/c>4 представляют собой десять дифференциальных уравнений для десяти функций метрического тензора. В целом их смысл заключается в том, что масса, энергия, импульс (количество движения), давление и сдвиговые напряжения (все эти величины служат составляющими T>µν) заставляют пространство-время искривляться. В ситуациях, где все массивные тела движутся медленно, а давлением и сдвиговыми напряжениями можно пренебречь, самым важным компонентом уравнений Эйнштейна оказывается тот, который зависит только от времени: G>00 = 8πG>NT>00/c>4. Мы пишем G>00 вместо G>µν, потому что нас сейчас интересуют уравнения Эйнштейна с индексами µ = 0 и ν = 0, а обычно принято полагать индекс тензора равным нулю, когда он относится к временному измерению, в то время, как индексы µ = 1, 2 или 3 относились бы к нашим привычным трем пространственным измерениям. Когда мы имеем дело с «обычным тяготением», уравнение