Но начнем с небольшого исторического экскурса во времена, предшествовавшие открытию Шварцшильда. Эйнштейн знал об одной из самых интригующих загадок астрономии: прецессии (то есть смещении) перигелия Меркурия. Орбита Меркурия слегка эллиптична: это разрешено законами Кеплера и согласуется с ньютоновской теорией тяготения. Перигелием орбиты называется точка наибольшего ее приближения к Солнцу. Оказалось, что большая ось эллипса орбиты Меркурия, а вместе с ней и перигелий, медленно обращается (прецессирует) вокруг Солнца в том же направлении, в каком движется по своей орбите Меркурий. Эта прецессия долго и подробно изучалась, и во времена Эйнштейна уже было ясно, что она в основном может быть объяснена влиянием других планет. Загадка была в том, что даже после учета всех возможных гравитационных воздействий в рамках ньютоновского тяготения все равно оставалось расхождение между расчетами и наблюдениями, хотя и очень маленькое.
Чтобы продемонстрировать, насколько оно было мало (а заодно и насколько точными стали астрономические наблюдения в XIX веке), обратимся к числам. Орбита Меркурия прецессирует всего чуть больше чем на 574″ (угловые секунды) в столетие, а ньютоновская механика дает примерно 531″. Расхождение, таким образом, составляет 43″ за 100 лет. За один оборот Меркурия по орбите это соответствует смещению большой оси эллипса орбиты примерно на 1/35 000°. И еще до того, как Шварцшильд нашел свое точное решение уравнений поля Эйнштейна, сам Эйнштейн сумел получить достаточно хорошее приближение этого решения, которое позволило точно рассчитать движения планет в гравитационном поле Солнца. Для орбиты Меркурия эти расчеты в точности совпали со знаменитой аномальной процессией! Эврика!
На пути к окончательному виду уравнений поля, который он вывел в 1915 году, у Эйнштейна было много озарений, были и ошибки. Но это стало настоящим моментом истины. Эйнштейн понял, что он действительно создал верную релятивистскую теорию тяготения.
Теперь, когда у нас есть точное выражение для шварцшильдовской метрики, мы можем рассчитать всевозможные орбиты движения массивных тел вокруг черных дыр, орбиты, которые дают значительно более сильные отличия от ньютоновских эллипсов, чем исчезающе малая прецессия, наблюдаемая у орбиты Меркурия. И все же именно в ранних вычислениях Эйнштейна содержится зерно основной идеи, которая позволяет описать многие из этих орбит. Оставим позади Солнечную систему и направимся к центру Млечного Пути, где притаилась циклопическая черная дыра, монстр, в котором аккумулировано около 4 миллионов солнечных масс. Это не совсем шварцшильдовская черная дыра: это вращающаяся черная дыра Керра, значительно более сложный объект, который мы опишем в главе 4. Но для целей нынешнего рассказа допустим некоторую вольность и будем считать монстра в центре Млечного Пути черной дырой Шварцшильда, а заодно проигнорируем все вещество, которое может оказаться в ее окрестностях. Ее радиус Шварцшильда примерно равен 12 миллионов километров. Наши храбрые наблюдатели, Алиса и Боб, решили запарковать свой звездолет на круговой орбите радиусом 150 миллионов километров от черной дыры – это, как известно, радиус орбиты Земли, по которой она обращается вокруг Солнца. Но так как притяжение черной дыры намного сильнее притяжения Солнца (примерно в 4 миллионов раз!), то по своей круговой орбите Алиса и Боб будут двигаться гораздо быстрее, чем Земля, которая на свой оборот вокруг Солнца тратит год. Полный оборот по орбите у Алисы и Боба займет примерно 4 часа. На этой орбите гравитационное замедление времени заставит их часы идти на 4 % медленнее, чем они идут у очень далекого наблюдателя.