1980 №1 (Журнал «Наука и жизнь») - страница 105

, Au>2+, Ag>2+ также предпочитают квадратную координацию, и тогда получаются соединения лишь с двумя молекулами-клещами. А вот Fe>3+, Со>3+, Ni>2+, Сr>3+ и многие другие предпочитают возводить вокруг себя октаэдрические постройки. У октаэдра шесть вершин, поэтому вокруг центрального иона в этом случае могут разместиться три лиганда типа этилендиамина, каждая из которых займет две соседние вершины октаэдра. Впрочем, нередко и координационное окружение и вместе с ним число мест для хватки лиганда зависят, так сказать, от норова последнего — тот же Ni>2+ образует с диметилглиоксимом HON = C(CH>3) — С(СН>3) — NOH соединение ярко-розового цвета, которое содержит на один атом металла только две молекулы вышеуказанного соединения, ориентированных по вершинам квадрата…

Если центральный ион попадает в объятия двух или большего числа подобных клещей, концы которых неравноценны, то возникает любопытная возможность — эти клещи могут занять относительно охватываемого ими атома металла разные позиции! Например, ион Со>3+ образует с тиосемикарбазидом NH>2 - CS - NH - NH>2 два соединения, зеленое и фиолетовое, различающиеся взаимной ориентацией лигандов.

Известны экзотические примеры комплексов никеля, которые в зависимости от температуры меняют свою геометрию: при относительно низких температурах молекулярные клещи лигандов располагаются по вершинам квадрата, а при более высоких — подстраиваются под тетраэдрическую координацию. Перед нами примеры изомерии, аналогии которой в органической химии нет.

Чем же определяется прочность сцепления молекулярных клещей с захваченными в плен орехами?

На первый взгляд может показаться, что в роли клещей может выступать любая молекула — были бы только донорные атомы! Но на поверку это оказывается не так. Возьмем несколько органических молекул-цепочек различной длины, на концах которых сидят аминогруппы NH>2:

NH>2—NH>2;

NH>2—(СН>2)>2—NH>2;

МН>2 — (СН>2)>4 — NH>2.

Оказывается, клещевидные комплексы образует только второе из этих веществ — уже знакомый нам этилендиамин. В чем тут дело?

Поглядим повнимательнее, что за соединение могли бы дать такие лиганды.

Как видно, в первом случае получаются комплексы с трехчленным, во втором— с пятичленным и в третьем — с семичленным циклом. Между тем известно, что наиболее устойчивыми являются именно пяти- и шестичленные циклы, тогда как устойчивость остальных значительно меньше. Поэтому из этой троицы лигандов только один этилендиамин и способен функционировать в качестве клещей, тогда как другие два лиганда могут зацепиться за ион металла только посредством одного лишь атома азота. Образно говоря, «захваты» клещей должны иметь оптимальные размеры — не быть слишком длинными, но и не слишком короткими.