Важная особенность систем с такими реакционными петлями состоит в том, что кинетические уравнения, которые описывают происходящие в них изменения, являются нелинейными дифференциальными уравнениями.
Если мы применим тот же метод, то для реакции A+2X→3X получим кинетическое уравнение dX/dt=КАХ>2, т. е. скорость изменения концентрации вещества Х окажется пропорциональной квадрату его концентрации.
Другой весьма важный класс каталитических реакций в биологии — так называемый кросс-катализ — представлен для системы 2X+Y→3X, B+X→Y+D на рис. 3.
Рис. 3. На этом графике представлены пути реакций для «брюсселятора» (более подробно «брюсселятор» описан в тексте).
В данном случае мы действительно имеем дело с кросс-катализом (т. е. «перекрестным катализом»), поскольку из Y получается X, а из Х одновременно получается Y. Катализ не обязательно увеличивает скорость реакции. Он может и замедлять, или ингибировать, ее. Графически это также изображается с помощью соответствующих петель обратной связи.
Характерные математические особенности нелинейных дифференциальных уравнений, описывающих химические реакции с каталитическими стадиями, как мы убедимся в дальнейшем, имеют жизненно важное значение для термодинамики сильно неравновесных химических процессов. Кроме того, как мы уже упоминали, биологами установлено, что петли обратной связи играют весьма существенную роль в метаболических функциях. Например, взаимосвязь между нуклеиновыми кислотами и протеинами может быть описана как кросс-катализ: нуклеиновые кислоты являются носителями информации, необходимой для синтеза протеинов, а протеины в свою очередь синтезируют нуклеиновые кислоты.
Помимо скоростей химических реакций, необходимо также учитывать скорости других необратимых процессов, таких, как перенос тепла и диффузия вещества. Скорости необратимых процессов называются также потоками и обозначаются буквой J. Общей теории, которая давала бы скорости, или потоки, не существует. В химических реакциях скорость зависит от молекулярного механизма, в чем нетрудно убедиться на уже приведенных примерах. Термодинамика необратимых процессов вводит величины еще одного типа: помимо скоростей или потоков J, она использует обобщенные силы X, т. е. «причины», вызывающие потоки. Простейшим примером может служить теплопроводность. Закон Фурье утверждает, что поток тепла J пропорционален градиенту температуры. Следовательно, градиент температуры есть та «сила», которая создает поток тепла. По определению, и поток и силы в состоянии теплового равновесия равны нулю. Как мы увидим в дальнейшем, производство энтропии