Порядок из хаоса (Пригожин, Стенгерс) - страница 181

.

Интересно отметить, что Бергсон, избравший в определенном смысле иной путь, также пришел к дуалистическому заключению (см. гл. 3). Подобно Эйнштейну, Бергсон начал с субъективного времени и, отправляясь от него, двинулся к времени в природе, времени, объективированному физикой. Но, с точки зрения Бергсона, такая объективизация лишила время прочной основы. Внутреннее экзистенциальное время утратило при переходе к объективированному времени свои качественные отличительные свойства. По этой причине Бергсон ввел различие между физическим временем и длительностью — понятием, относящимся к экзистенциальному времени.

Но на этом история не кончается. Как заметил Дж. Т. Фрезер, «последовавшее разделение на время ощущаемое и время понимаемое является клеймом научно-промышленной цивилизации, своего рода коллективной шизофренией»[184]. Как мы уже отмечали, там, где классическая наука подчеркивала незыблемость и постоянство, мы обнаруживаем изменение и эволюцию. При взгляде на небо мы видим не траектории, некогда восхищавшие Канта ничуть не меньше, чем сам пребывающий в нем моральный закон, а некие странные объекты: квазары, пульсары, взрывающиеся и разрывающиеся на части галактики, звезды, коллапсирующие, как нам говорят, в «черные дыры», которые безвозвратно поглощают все, что в них попадает.

Время проникло не только в биологию, геологию и социальные науки, но и на те два уровня, из которых его традиционно исключали: микроскопический и космический. Не только жизнь, но и Вселенная в целом имеет историю, и это обстоятельство влечет за собой важные следствия.

Первая теоретическая работа, в которой космологическая модель рассматривалась с точки зрения общей теории относительности, была опубликована Эйнштейном в 1917 г. В ней Эйнштейн нарисовал статическую, безвременную картину мира Спинозы, своего рода миросозерцание в переводе на язык физики. И тогда случилось неожиданное: сразу же после выхода в свет работы Эйнштейна стало ясно, что, помимо найденных им стационарных решений, эйнштейновские уравнения допускают и другие нестационарные (т. е. зависящие от времени) решения. Этим открытием мы обязаны советскому физику А. А. Фридману и бельгийцу Ж. Леметру. В то же время Хаббл и его сотрудники, занимаясь изучением движения галактик, показали, что скорость дальних галактик пропорциональна расстоянию до них от Земли. В рамках теории расширяющейся Вселенной, основы которой были заложены Фридманом и Леметром, закон Хаббла был очевиден. Тем не менее на протяжении многих лет физики всячески сопротивлялись принятию «исторического» описания эволюции Вселенной. Сам Эйнштейн относился к нему с большой осторожностью. Леметр часто рассказывал, что, когда он пытался обсуждать с Эйнштейном возможность более точного задания начального состояния Вселенной в надежде найти объяснение космических лучей, Эйнштейн не проявил никакого интереса.