Против подобной точки зрения сразу же можно возразить. Приведенные выше интерпретации исходят из того, что термодинамика должна быть столь же универсальной, как и наше незнание. Но тогда должны существовать только необратимые процессы. Именно это и является камнем преткновения всех универсальных интерпретаций энтропии, уделяющих основное внимание нашему незнанию начальных (или граничных) условий. Необратимость — не универсальное свойство. Чтобы установить связь между динамикой и термодинамикой, необходим физический критерий, который позволил бы нам различать обратимые и необратимые процессы.
К этому вопросу мы вернемся в гл. 9. А пока обратимся снова к истории науки и к пионерским работам Больцмана.
Свои основные результаты Больцман получил в 1872 г., за тридцать лет до того, как были открыты цепи Маркова. Больцман намеревался дать «механическую» интерпретацию энтропии. Иначе говоря, если в цепях Маркова вероятности перехода заданы извне (как в модели Эренфестов), их в действительности необходимо связать с динамическим поведением системы. Эта проблема настолько захватила Больцмана, что он посвятил ей большую часть своей научной жизни. В его «Статьях и речах» есть такие строки:
«Если вы меня спросите относительно моего глубочайшего убеждения, назовут ли нынешний век железным веком или веком пара и электричества, я отвечу не задумываясь, что наш век будет называться веком... Дарвина»[205].
Идея эволюции неотразимо влекла к себе Больцмана. Его мечтой было стать Дарвином эволюции материи.
Первый шаг на пути к механистической интерпретации энтропии состоял во введении в физическое описание некогда отброшенного представления о столкновении атомов и молекул и тем самым в создании базы для статистического описания. Этот шаг был сделан Клаузиусом и Максвеллом. Так как столкновения — явления дискретные, их можно сосчитать и оценить среднюю частоту. Мы можем также классифицировать столкновения, например отнести к одному классу столкновения, в результате которых рождается частица с заданной скоростью v, а к другому — столкновения, в результате которых частица со скоростью v исчезает, превращаясь в частицы с другими скоростями (т. е. разделить столкновения на прямые и обратные)[206].
Максвелла интересовало, можно ли указать такое состояние газа, в котором столкновения, непрестанно изменяющие скорости молекул, не сказываются более на эволюции распределения скоростей, т. е. на среднем числе молекул, движущихся с любой из скоростей. При каком распределении скоростей последствия различных столкновений в целом по ансамблю взаимно компенсируются?