=0 у нас имеется смесь водорода и кислорода. Через какое-то время образуется вода. Если обратить все скорости, то смесь вернется в исходное состояние: вода исчезнет, останутся только водород и кислород.
Интересно, что в лаборатории или в численном моделировании обращение скоростей — вполне выполнимая операция. Например, на рис. 26 и 27 H-функция Больцмана вычислена для двухмерных твердых сфер (дисков). В начальный момент времени диски располагаются в узлах квадратной решетки с изотропным распределением скоростей. Результаты вычислений совпадают с предсказаниями Больцмана.
Рис. 26. Эволюция H со временем для N «твердых шаров» (численное моделирование): a) N=100, b) N=484, с) N=1225.
Если через пятьдесят или сто столкновений (в разреженном газе это соответствует 10>-6с) обратить скорости, то получается новый ансамбль[210]. После обращения скоростей H-функция Больцмана уже не убывает, а возрастает.
Аналогичная ситуация возникает при определенных условиях в реальных экспериментах со спиновым эхом и эхом в плазме: на ограниченных интервалах времени наблюдается «антитермодинамическое», в смысле Больцмана, поведение системы.
Важно отметить, что эксперимент по обращению скоростей тем труднее, чем позже происходит обращение скоростей (т. е. чем больше время t>0).
Восстановить свое прошлое газ может лишь в том случае, если он «помнит» все, что с ним произошло в интервале времени от t=0 до t=t>0. Для этого необходимо какое-то «хранилище» информации. В роли такого хранилища, или памяти, выступают корреляции между частицами. К вопросу о корреляциях мы вернемся в гл. 9. Пока же заметим, что именно это соотношение между корреляциями и столкновениями было недостающим звеном в рассуждениях Больцмана. Когда Лошмидт в полемике с Больцманом указал на это обстоятельство, Больцман вынужден был признать правоту своего оппонента: обратные столкновения «ликвидируют последствия» прямых столкновений и система должна возвращаться в начальное состояние. Следовательно, H-функция должна возрастать от конечного значения к начальному. Таким образом, обращение скоростей требует проведения различия между ситуациями, к которым рассуждения Больцмана применимы, и ситуациями, в которых те же рассуждения неверны.

Рис. 27. Эволюция H при обращении скоростей после 50 и 100 соударений. Численное моделирование для 100 «твердых шаров».
После того как эта проблема была поставлена (1894), выяснить природу ограничения оказалось. совсем не трудно[211]>,[212]. Применимость статистического подхода Больцмана зависит от предположения о том, что