Порядок из хаоса (Пригожин, Стенгерс) - страница 216

Кроме того, существуют и другие стрелы времени, например космологическая стрела (о которой превосходно написал в своей книге «Этот правый, левый мир» Мартин Гарднер[220]). Предполагая, что Вселенная началась с большого взрыва, мы тем самым подразумеваем существование временного порядка на космологическое уровне. Размеры Вселенной продолжают возрастать, но мы не можем отождествить радиус Вселенной с энтропией: внутри Вселенной, как мы уже упоминали, происходят и обратимые, и необратимые процессы. Аналогичным образом в физике элементарных частиц существуют процессы, приводящие к нарушению T-симметрии. Последнее означает, что уравнения, описывающие эволюцию системы при +t, отличны от уравнений, описывающих эволюцию системы при —t. Однако нарушение Т-симметрии не мешает нам включать ее в обычную (гамильтонову) формулировку динамики. Определить энтропию с помощью нарушения Т-симметрии невозможно.

В этой связи нельзя не вспомнить знаменитую дискуссию между Эйнштейном и Ритцем, опубликованную в 1909 г.[221]. Совместная публикация Эйнштейна и Ритца крайне необычна. Она весьма коротка — занимает менее печатной страницы. По существу, в ней лишь констатируется расхождение во взглядах. Эйнштейн считал, что необратимость является следствием введенных Больцманом вероятностных понятий. Ритц же отводил решающую роль различию между запаздывающими и опережающими волнами. Это различие напоминает нам аргументацию Поппера. Волны, которые мы наблюдаем в пруду, — запаздывающие. Они появляются после того, как мы бросили камень.

И Эйнштейн и Ритц существенно обогатили дискуссию о необратимости, но каждый из них акцентировал внимание лишь на каком-то одном аспекте проблемы. В гл. 8 мы упоминали о том, что вероятность уже предполагает направленность времени и, следовательно, не может служить основанием при выводе стрелы времени. Мы упоминали и о том, что исключение таких процессов, как опережающие волны, не обязательно приводит к формулировке второго начала. Необходимы аргументы как одного, так и другого типа.

2. Необратимость как процесс нарушения симметрии

Прежде чем обсуждать проблему необратимости, полезно напомнить, как можно вывести другой тип нарушения симметрии, а именно нарушение пространственной симметрии. В уравнениях реакции с диффузией ту же роль играют «левое» и «правое» (уравнения диффузии инвариантны относительно инверсии пространства r→—r). Тем не менее, как мы знаем, бифуркации могут приводить к решениям, симметрия которых нарушена. Например, концентрация какого-нибудь из веществ, участвующих в реакции, справа может оказаться больше, чем слева. Симметрия уравнений реакций с диффузией требует лишь, чтобы решения с нарушенной симметрией появлялись парами, а не поодиночке.