служит мерой силы, приложенной в данной точке в направлении этой координаты. Таким образом, законы движения Ньютона можно сформулировать, используя в качестве основной величины потенциальную энергию вместо силы: изменение скорости (или импульса
р — произведения массы и скорости) материальной точки измеряется производной от потенциала по координате
q точки.
В XIX в. эта формулировка второго закона Ньютона была обобщена с помощью введения новой функции — гамильтониана Н. Функция Гамильтона есть не что иное, как полная энергия системы, т. е. сумма ее кинетической и потенциальной энергии. Но полная энергия представлена как функция не координат и скоростей, обозначаемых, по традиции, соответственно q и dq/dt, а так называемых канонических переменных — координат и импульсов, которые принято обозначать q и р. В простейших случаях, таких, как свободная частица, между скоростью и импульсом существует явное соотношение (p=mdq/dt), но в общем случае скорость и импульс связаны более сложной зависимостью.
Одна функция (гамильтониан) Н(р, q) полностью описывает динамику системы. Вид функции Н несет в себе все наше эмпирическое знание системы. Зная гамильтониан, мы можем (по крайней мере в принципе) решить все возможные задачи. Например, изменения координаты и импульса во времени равны просто производным от Н по р и q. Гамильтонова формулировка динамики — одно из величайших достижений в истории науки. Впоследствии сфера действия гамильтонова формализма расширилась, охватив теорию электричества и магнетизма. Используется он и в квантовой механике, но, как мы увидим в дальнейшем, гамильтониан Н при этом приходится понимать в обобщенном смысле: в квантовой механике гамильтониан перестает быть обычной функцией координат и импульсов и становится величиной нового типа — оператором. (К этому вопросу мы еще вернемся в гл. 7.) Не будет преувеличением сказать, что гамильтоново описание динамических систем и поныне имеет первостепенное значение. Уравнения, задающие временные изменения координат и импульсов через производные от гамильтониана, называются каноническими уравнениями. В них содержатся общие свойства всех динамических изменений. Гамильтонов формализм представляет собой несомненный триумф математизации природы. Любое динамическое изменение, к которому применима классическая динамика, может быть сведено к простым математическим уравнениям — каноническим уравнениям Гамильтона.
Используя эти уравнения, мы можем проверить правильность заключений относительно общих свойств динамических систем, выведенных в классической динамике. Канонические уравнения