Порядок из хаоса (Пригожин, Стенгерс) - страница 81

Это положение подтверждали и другие факты. Мы уже упоминали о том, что траектории динамической системы соответствуют детерминистическим законам: коль скоро начальное состояние задано, динамические законы движения позволяют вычислить траекторию для любого момента времени в будущем и в прошлом. Однако в некоторых особых точках траектория может становиться внутренне неопределенной. Например, жесткий маятник может совершать движения двух качественно различных типов: либо колебаться, либо вращаться вокруг точки подвеса. Если начальный толчок достаточно силен для того, чтобы привести маятник в вертикальное положение с нулевой скоростью, то направление, в котором он упадет, и, следовательно, характер движения не определенны. Достаточно сообщить маятнику бесконечно малое возмущение, чтобы он начал вращаться или совершать колебания вокруг точки подвеса. (Подробно проблема неустойчивости движения, с которой мы здесь сталкиваемся, будет рассмотрена в гл. 9.)

Интересно, что еще Максвелл придавал особым точкам большое значение. Описывая взрыв ружейного пороха, он замечает:

«Во всех этих случаях имеется одно общее обстоятельство: система обладает некоторым количеством потенциальной энергии, способным трансформироваться в движение, но не трансформирующимся до тех пор, пока система не достигнет определенной конфигурации, для перехода в которую требуется совершить работу, в одних случаях бесконечно малую, но, вообще говоря, не находящуюся в определенной пропорции к энергии, выделяемой вследствие перехода. Примерами могут служить скала, отделившаяся от основания в результате выветривания и балансирующая на выступе горного склона, небольшая искра, поджигающая огромный лес, слово, ввергающее мир в пучину войны, крупица вещества, лишающая человека воли, крохотная спора, заражающая посевы картофеля, геммула[83], превращающая нас в философов или идиотов. У каждого существования выше определенного ранга имеются свои особые точки; чем выше ранг, тем их больше. В этих точках воздействия, физическая величина которых слишком мала для того, чтобы существо конечных размеров принимало их во внимание, могут приводить к необычайно важным последствиям. Всеми великими результатами человеческой деятельности мы обязаны искусному использованию таких особых состояний, когда такая возможность предоставлялась»[84].

Идеи Максвелла не получили дальнейшего развития из-за отсутствия подходящих математических методов для идентификации систем с особыми точками и отсутствия химических и биологических знаний, позволяющих, как мы увидим из дальнейшего, более глубоко проникнуть в понимание той весьма важной роли, которую играют особые точки.