Однако существует ряд классических задач, известных тем, что они не могут быть решены лишь с помощью линейки и циркуля. Например, квадратура круга (построение квадрата с той же площадью, что и у данного круга), удвоение куба (построение куба, который имеет в два раза больший объем, чем данный куб с известной стороной) или деление угла на три равные части. Кроме того, невозможно построить некоторые правильные многоугольники, используя только циркуль и линейку, например, семиугольник и пятиугольник.
Тем не менее, правильный пятиугольник может быть построен с помощью линейки и циркуля с использованием Ф. Таким образом, число Ф внесло свой вклад в решение классических задач эпохи.
К. Ф. ГАУСС (1777–1855)
Немецкий математик Карл Фридрих Гаусс является одним из величайших научных деятелей. После смерти он был удостоен почетного титула «принц математиков». Он решил специализироваться на математике несмотря на то, что делал большие успехи и в других областях. На решение Гаусса частично повлияло его открытие метода построения правильного 17-угольника с помощью линейки и циркуля. Гаусс сделал это в возрасте 18 лет, и это стало ключевым моментом не только его карьеры, но и всей будущей математики.
* * *
Рассмотрим правильный пятиугольник, в котором проведены диагонали.
Остановимся на треугольнике BED, одном из трех равнобедренных треугольников. Длина его равных сторон BE = BD равна е, длине диагонали пятиугольника (стороне пятиконечной звезды). Кроме того, сторона ED является стороной пятиугольника р, которую мы возьмем равной единице: р = 1. Теперь проверим, что выполняется соотношение EB/ED = е/р = е/1= Ф и, следовательно, мы имеем золотое сечение. Другими словами, е = Ф.
ПРАВИЛЬНЫЙ ПЯТИУГОЛЬНИК ИЗ ПОЛОСКИ БУМАГИ
Несмотря на все ограничения, существует простои способ построения правильного пятиугольника, если только мы не стремимся к абсолютной точности. Надо взять полоску бумаги и завязать ее в узел. В результате получится правильный пятиугольник. Посмотрите внимательно на рисунок. Стороны полученного правильного пятиугольника ABCDE лежат на гипотенузе одинаковых треугольников, больший катет которых имеет ширину полоски.
* * *
Деля угол D пополам, мы получим треугольник DEF. Он имеет такие же углы, что и BED, следовательно, эти треугольники подобны. Отсюда следует, что
EB/ED = ED/EF. (1)
Так как ED = FD = FB = 1 и EF = ЕВ — 1, подставляя в (1), получим:
ЕВ/1 = 1/(ЕВ-1)
ЕВ>2 — ЕВ = 1
ЕВ>2 — ЕВ -1 = 0
ЕВ = (1 + √5)/2 = Ф
ТЕОРЕМА МОРЛИ
Эта теорема необычна тем, что она не была известна древним грекам, хотя те открыли большинство свойств треугольника еще 2000 лет назад. Теореме чуть более ста лет. Фрэнк Морли (1860–1937) доказал ее в 1904 г., но опубликована она была лишь 20 лет спустя. Теорема Морли заключается в следующем: если мы разделим внутренние углы любого треугольника на три равные части, проведя по две прямые линии из каждого угла, то шесть линий пересекутся, образуя три точки, которые всегда являются вершинами равностороннего треугольника. Независимо от того, каким был исходный треугольник, мы всегда получим равносторонний треугольник как результат пересечения трисектрис.