Золотое сечение [Математический язык красоты] (Мир математики. т.1.) (Корбалан) - страница 57



Количества спиралей на сосновой шишке в каждом направлении (8,13) являются числами из последовательности Фибоначчи.


Последовательность Шимпера — Брауна, состоящая из отношений чисел из последовательности Фибоначчи соответственно к числам, следующим через позицию, ajа>п+2, позволяет классифицировать многие виды по углу расхождения. Так как отношение между двумя последовательными числами а>n+1/а>n стремится к Ф, отношения из последовательности Шимпера — Брауна стремятся к 1/Ф>2. Математическое доказательство выглядит следующим образом:



По-настоящему сложный вопрос заключается в том, откуда растения «знают», что их листья должны быть расположены в соответствии с последовательностью Фибоначчи? Дело в том, что стебель растения имеет коническую форму. Листья на стебле растут радиально, если смотреть на растение сверху. Браве заметил, что каждый следующий лист повернут примерно на 137,5° от предыдущего. Посчитаем

360°∙1/Ф>2 = 360°/Ф>2

(где 360° соответствует полному обороту) и получим угол в 137,5°, который иногда называют «золотым» углом.

Идя в противоположном направлении, от математики к ботанике, группа ученых во главе с Ривьером доказала в 1984 г., что, используя математический алгоритм и угол роста, равный «золотому» углу, можно получить конфигурации, подобные тем, которые встречаются у реального подсолнечника. Это заключение было интересно тем, что именно однородные и сопоставимые структуры в живых организмах резко ограничивают их возможные формы. В свою очередь, это объясняло частое появление чисел Фибоначчи и золотого сечения в филлотаксисе. Другие эксперименты, например, с магнитными полями, также приводят к конфигурациям с «золотой» спиралью.



Каждый следующий лист на стебле подсолнечника повернут примерно на 137,5° от предыдущего.


В этом распределении виртуальных семян, сгенерированном компьютером, можно ясно увидеть большое количество спиралей в разных направлениях. Количества спиралей похожей длины в обоих направлениях обычно соответствуют числам из последовательности Фибоначчи.



Классический эксперимент в этой области был проведен в 1907 г. немецким математиком Герритом ван Итерсоном. Он расположил последовательные точки по спирали с поворотом на 137,5° и показал, что человеческий глаз воспринимает их как семейство спиралей, закрученных по часовой и против часовой стрелки. Количество спиралей в этих двух семействах, как правило, соответствует числам Фибоначчи. Подсолнечник — один из самых ярких примеров этого явления. Его семена образуют спирали по часовой и против часовой стрелки. Количества таких спиралей являются числами из последовательности Фибоначчи. Наиболее часто встречаются пары 21 и 34, 34 и 55, 89 и 144.