Новый взгляд на мир [Фрактальная геометрия] (Мир математики. т.10.) (Басса) - страница 12


Появление бесконечно удаленной прямой

В эпоху Возрождения ученые и художники начали поиски новых геометрических методов, которые бы позволили точнее изображать реальность. Среди наиболее известных — Филиппо Брунеллески, Леонардо да Винчи и Лука Пачоли, которые в своих работах стремились передать на плоскости ощущение глубины. Благодаря их усилиям сформировались практические основы науки, позднее получившей название «перспектива»[8].

Как мы уже говорили, математика евклидова пространства является одним из ключевых элементов современной научной мысли, причем это в равной степени относится и к естественным дисциплинам, и к гуманитарным наукам и искусству. По Евклиду, математическое пространство — это пустое и абсолютное пространство, в котором формируется реальность, в том числе художественная.

В этом пространстве действуют законы перспективы, что было бы невозможно без математики Евклида, в которой описывается линейное пространство.

Фреска «Афинская школа» Рафаэля, на которой изображены практически все греческие мудрецы — известнейший пример использования перспективы. На фреске под крышей грандиозного архитектурного сооружения изображены представители классической философии, собравшиеся вместе. На этом шедевре Рафаэля время словно остановилось для мудрецов из разных эпох. И среди них наш старый знакомый Евклид. Рафаэль изобразил его в правой части картины. Евклид, согнувшись, что-то объясняет ученикам, рисуя дуги циркулем на маленькой доске. На фреске также есть и Пифагор, он сидит в противоположном углу и что-то пишет на табличке. Пифагор и Евклид изображены в разных сторонах нижней части картины — именно там, где начинаются воображаемые линии, сходящиеся к центру композиции, где расположены Платон и Аристотель. Эти линии теряются на горизонте и уходят в бесконечность.



«Афинская школа». Помимо Евклида и Пифагора, на фреске Рафаэля также изображены Зенон Китийский, Эпикур, Анаксимандр, Аверроэс, Александр Великий, Ксенофонт, Гапатия, Парменид, Сократ, Диоген Синопский, Плотин, Архимед, Заратустра, Клавдий Птолемей, Протоген и сам Рафаэль. Художник вывел себя в образе Апеллеса.


Шаг в бесконечность: проективная геометрия

Формальные принципы и основы проективной геометрии создал Жерар Дезарг (1591–1661). Этот французский математик заметил, что круг в перспективе выглядит как эллипс, а тень, которую отбрасывает на стену круглый предмет, может принимать форму круга, эллипса, параболы или ветви гиперболы в зависимости от угла наклона предмета. (Четыре упомянутые кривые — окружность, эллипс, парабола и гипербола — называются коническими сечениями.) Это означает, что проекция предмета (в нашем примере это тень) преобразует одну фигуру в другую