>Первые итерации построения дьявольской лестницы.
>(Источник: Мария Изабель Бинимелис.)
Дьявольская лестница — это не просто график некоторой функции с примеча тельными свойствами. Она описывает свойства многих физических систем.
ДЬЯВОЛЬСКИЕ ЛИНЗЫ
В отличие от обычных, или преломляющих, линз, дифракционные линзы фокусируют лучи благодаря явлению дифракции, которое возникает при взаимодействии света с физической структурой линзы в форме концентрических колец различной плотности и (или) светопроницаемости. Существует разновидность дифракционных линз, известных как дьявольские линзы, которые обладают повышенной глубиной резкости и меньшими хроматическими аберрациями. Несмотря на зловещее название, эти линзы не содержат чего-то колдовского или сверхъестественного, что подтверждают их создатели: «Эти линзы получили такое название благодаря особому профилю, который был разработан по образцу фрактальной структуры, известной в математике под названием „дьявольская лестница"».
Эти линзы являются мультифокальными, то есть имеют несколько очень близко расположенных точек фокуса. Интенсивность света в фокусах линзы описывается фрактальной структурой. Мультифокальность линзы означает, что фокусы, соответствующие различным длинам световых волн, накладываются друг на друга; тем самым создается более четкое изображение. Это же свойство позволяет повысить глубину резкости, то есть расширить область, в пределах которой обеспечивается четкость изображения.
На фотографиях представлены дифракционные линзы под микроскопом. Видно, что они образованы множеством неравномерно расположенных концентрических колец. В основе строения этих линз лежит фрактальная структура. Мультифокальные линзы подобного типа используются для коррекции зрения.
Они также могут быть имплантированы внутрь глаза при операциях по удалению катаракты.
Что общего у губок, пылинок и снежинок?
Простейшие преобразования объектов, которые можно выполнить на плоскости, называются преобразованиями подобия. Как следует из названия, они преобразуют один объект в другой, подобный первому, то есть изменяют не форму объекта, а лишь его положение, размер или ориентацию. К преобразованиям подобия относятся параллельный перенос, сжатие и растяжение, вращение и отражение.
Кривая Коха, о которой мы рассказали в прошлой главе, обладает свойством самоподобия, так как состоит из нескольких (четырех) частей, подобных всей кривой в целом. Чтобы получить первую часть кривой (расположенную слева), нужно всего.\ишь уменьшить всю кривую в три раза и совместить левый конец кривой с левым концом полученной уменьшенной копии.