Рис. 4.7. Круговые волны на воде, идущие от каждой щели, накладываются одна на другую; это приводит к тому, что в одних местах результирующая волна будет усиливаться, а в других ослабляться.
Точки с сильной качкой будут расположены там, где накладываются максимумы (или минимумы) волн, приходящих от разных щелей. Участки с минимальной качкой или полным ее отсутствием окажутся там, где максимумы волны, идущей от одной щели, будут совпадать с минимумами волны, идущей от другой щели.
Поскольку фотографическая пластинка регистрирует, насколько сильно она «раскачивается» под влиянием падающего света, из приведенных выше рассуждений, примененных к волновой картине, создаваемой лучом света, следует, что когда открыты обе щели, фотография будет иметь вид, показанный на рис. 4.8. Самые яркие участки на рис. 4.8 представляют области, в которых максимумы (или минимумы) световых волн, пришедших от разных щелей, совпадают. Темными являются участки, в которых максимум одной волны складывается с минимумом другой, приводя к взаимному погашению. Такая последовательность светлых и темных полос известна под названием интерференционной картины.
Рис. 4.8. Если свет представляет собой волну, тс в тех случаях, когда открыты обе щели, будет про исходить интерференция между волнами, прошед шими через разные щели.
Эта фотография существенно отличается от рис. 4.6, и, следовательно, требуется эксперимент, который позволил бы установить, какая из теорий права — корпускулярная или волновая. Подобный эксперимент был выполнен Юнгом, и его результат совпал с картиной, показанной на рис. 4.8, тем самым подтвердив волновую природу света. Ньютоновская теория корпускулярной природы света была отвергнута (хотя потребовалось некоторое время, прежде чем все физики согласились с этим). Доминирующая волновая теория света впоследствии получила надежное математическое обоснование в теории Максвелла.
Но Эйнштейн, низвергнувший заслуженную теорию гравитации Ньютона, похоже, возродил ньютоновскую корпускулярную модель света, введя понятие фотонов. Конечно, перед нами по-прежнему стоит вопрос: как объяснить интерференционную картину, показанную на рис. 4.8, с точки зрения корпускулярной теории? На первый взгляд можно предложить следующее объяснение. Вода состоит из молекул Н2О — «частиц» воды. Однако когда огромные количества этих молекул движутся в одном потоке, они могут создавать волны на поверхности воды, с присущими этим волнам интерференционными свойствами, показанными на рис. 4.7. Можно предположить, что в корпускулярной модели света волновые эффекты, например, интерференционные картины, возникают благодаря взаимодействию огромного числа световых корпускул — фотонов.