Еще более странным является пример с историей открытия принципов внутренней симметрии. В физике эти принципы обычно отражают нечто вроде семейных связей между отдельными членами в списке возможных элементарных частиц. Первый известный пример такой симметрии связан с двумя типами частиц, из которых состоят обычные атомные ядра, – протоном и нейтроном. Массы протона и нейтрона почти одинаковы, так что, когда нейтрон был открыт Джеймсом Чедвиком в 1932 г., сразу же возникло естественное предположение, что сильные ядерные силы (дающие вклад в массы нейтрона и протона) должны обладать простой симметрией: уравнения, определяющие эти силы, должны сохранять свой вид, если везде в них поменять местами роли протонов и нейтронов. Помимо прочего, из такой гипотезы следует, что сильные ядерные силы, действующие между двумя нейтронами, равны таким же силам, действующим между двумя протонами. Однако ничего нельзя сказать о силе, действующей между протоном и нейтроном. Поэтому несколько неожиданным оказался результат экспериментов, подтвердивших в 1936 г., что ядерные силы, действующие между двумя протонами, равны таким же силам, действующим между протоном и нейтроном[114] Это наблюдение породило идею симметрии, выходящей за рамки простой замены протонов на нейтроны и наоборот. Речь идет о симметрии по отношению к непрерывным преобразованиям, превращающим протоны и нейтроны в частицы, являющиеся суперпозициями протонов и нейтронов, с произвольной вероятностью находиться в протонном или нейтронном состояниях.
Подобные преобразования симметрии действуют на метку частицы, которая отличает протоны от нейтронов, способом, который математически совпадает с тем, как обычные вращения в трехмерном пространстве действуют на спины частиц, вроде протона, нейтрона или электрона[115]. Помня об этом примере, многие физики вплоть до начала 60-х гг. молчаливо предполагали, что по аналогии с вращениями, переводящими протон и нейтрон друг в друга, все преобразования внутренней симметрии, оставляющие неизменными законы природы, должны иметь форму вращений в некотором внутреннем пространстве двух, трех или более измерений. Учебники, в которых излагалось применение принципов симметрии к физике (включая классические книги Германа Вейля и Юджина Вигнера) даже не упоминали о других математических возможностях. Только в конце 50-х гг., после открытия множества новых частиц сначала в космических лучах, а позднее на ускорителях вроде бэватрона в Беркли, в среде физиков-теоретиков возникло более широкое понимание возможностей описания внутренних симметрий. Новые частицы, казалось, объединялись в значительно более обширные семейства, чем простая пара протон-нейтрон. Например, обнаружилось, что протон и нейтрон несут черты фамильного сходства с шестью другими частицами, называемыми гиперонами и имеющими тот же спин и близкие массы. Какой же тип внутренней симметриии может порождать такие обширные родственные группы?