указанным принципом симметрии, примерно таким же образом, как существование гравитационного поля диктуется симметрией между разными координатными системами. Это семейство состоит из фотона и частиц
W,
Z, причем эти поля также должны перемешиваться друг с другом, если мы перемешиваем поля электронов и нейтрино и поля кварков. Обмен фотонами обуславливает электромагнитные силы, а обмен частицами
W и
Z генерирует слабые ядерные силы, так что симметрия между электроном и нейтрино является также симметрией между электромагнитными и слабыми ядерными силами.
Однако подобная симметрия определенно отсутствует в окружающей нас природе, и поэтому-то ее так долго не могли открыть. Например, электроны и частицы W, Z обладают массами[162], а нейтрино и фотоны не имеют массы. (Слабые силы во много раз слабее электромагнитных именно благодаря большой массе W, Z.) Иными словами, симметрия, связывающая электроны, нейтрино и другие частицы, есть свойство основных уравнений стандартной модели, определяющих свойства элементарных частиц, но в то же время, эта симметрия не выполняется для решений этих уравнений, т.е. для свойств самих частиц.
Чтобы понять, как это возможно, чтобы уравнения имели симметрию, а решения – нет, предположим, что наши уравнения полностью симметричны относительно двух типов частиц (например, u-, d-кварков), и мы хотим найти решения этих уравнений, определяющие массы обеих частиц. Можно было бы предположить, что симметрия между двумя типами кварков приведет к тому, что и их массы окажутся одинаковыми, но это не единственная возможность[163]. Симметрия уравнений не исключает возможности того, что решение будет давать массу u-кварка больше, чем масса d-кварка, но при этом обязательно должно существовать второе решение уравнений, дающее массу d-кварка на столько же большую массы u-кварка. Таким образом, симметрия уравнений необязательно должна отражаться в симметрии каждого отдельно взятого решения этих уравнений, а лишь во всей совокупности решений. В этом простом примере реальные свойства кварков будут соответствовать одному или другому решению, демонстрируя нарушение симметрии исходной теории. Заметим, что на самом деле безразлично, какое из двух решений реализуется в природе, если единственной разницей между кварками u и d является разница в их массах, тогда разница между двумя решениями будет соответствовать тому, какой из кварков мы назовем u, а какой d. Природа, как мы ее знаем, соответствует одному решению всех уравнений стандартной модели, при этом безразлично