Краткая история химии. Развитие идей и представлений в химии. (Азимов) - страница 130

.

Не составил исключения и кислород. В 1929 г. американскому химику Уильямсу Фрэнсису Джиоку (род. в 1895 г.) удалось показать, что кислород имеет три изотопа. Наиболее распространен кислород-16, на его долю приходится около 99.8% всех атомов. В ядре кислорода-16 8 протонов и 8 нейтронов. В ядре кислорода-18, второго по распространенности изотопа, 8 протонов и 10 нейтронов, в ядре кислорода-17, который обнаружен лишь в следовых количествах, 8 протонов и 9 нейтронов.

Это создало проблему. Еще со времен Берцелиуса атомные массы элементов рассчитывались при допущении, что атомная масса кислорода равна 16.0000 (см. гл. 5). Но атомная масса кислорода могла быть только рассчитанной средней атомной массой трех изотопов, а соотношение изотопов кислорода могло от образца к образцу сильно меняться.

Физики начали определять атомные массы исходя из атомной массы кислорода-16, равной 16.0000. В результате был получен ряд величин (физическая атомная масса), которые на очень небольшую постоянную величину превышали те величины, которыми пользовались и которые постепенно уточняли на протяжении всего XIX в. (химические атомные веса).

В 1961 г. международные организации как химиков, так и физиков согласились принять за стандарт атомную массу углерода-12, приняв ее равной точно 12.0000. Атомные массы элементов, рассчитанные с учетом нового стандарта, почти точно совпадают со старыми химическими атомными весами, и, кроме того, новый стандарт связан только с одним изотопом, а не плеядой изотопов.

Глава 14 Ядерные реакции


Новые превращения

После того как стало очевидно, что атом состоит из более мелких частиц, которые произвольно перегруппировываются при радиоактивных преобразованиях, следующий шаг казался почти предопределенным.

Человек научился с помощью обычных химических реакций по своему усмотрению перестраивать молекулы. Почему бы не попытаться перестраивать ядра атомов, используя ядерные реакции? Протоны и нейтроны связаны гораздо прочнее, чем атомы в молекуле, и обычные методы, используемые для проведения обычных химических реакций, естественно, к успеху не приведут. Но ведь можно попытаться разработать новые методы.

Первый шаг в этом направлении был сделан Резерфордом [129]; он бомбардировал различные газы альфа-частицами и обнаружил, что каждый раз, когда альфа-частица ударяет в ядро атома, она нарушает его структуру (рис. 23).

В 1919 г. Резерфорд уже смог показать, что альфа-частицы могут выбивать протоны из ядер азота и объединяться с тем, что останется от ядра. Наиболее распространенным изотопом азота является азот-14, в ядре которого содержится 7 протонов и 7 нейтронов. Если из этого ядра выбить протон и добавить 2 протона и 2 нейтрона альфа-частицы, то получится ядро с 8 протонами и 9 нейтронами, т. е. ядро кислорода-17. Альфа-частицу можно рассматривать как гелий-4, а протон — как водород-1. Таким образом, Резерфорд первым успешно провел искусственную ядерную реакцию: