К сожалению, пока эксперименты проводились лишь при низких температурах (-188 градусов Цельсия) для снижения тока утечек. Первоочередной задачей ученых теперь будет демонстрация кремниевых спинтронных устройств, работающих при нормальной температуре. ГА
Плазмонный холодильник
Новый способ лазерного охлаждения полупроводников предложил теоретик из Университета Джонса Хопкинса в Балтиморе Джейкоб Хургин (Jacob Khurgin).
На первый взгляд очень странная идея задействовать лазерный свет для охлаждения чего бы то ни было, на самом деле не является ни странной, ни новой. В основном лазер используют в научных лабораториях для охлаждения отдельных атомов до сверхнизких температур. Вариаций тут много, но механизм охлаждения обычно везде одинаков. Частоту света лазера выбирают так, чтобы энергия его фотонов была чуть меньше характерной энергии спонтанного испускания атомов. Тогда, поглотив фотон, возбужденный атом затем излучает фотон с чуть большей энергией и за счет этой разницы в энергиях постепенно охлаждается.
В твердом теле похожий механизм удалось реализовать для охлаждения стекол с примесями иттербия и других редкоземельных элементов. Но все попытки сделать что-то похожее в полупроводниках до сих пор терпели фиаско. В полупроводнике поглощенный фотон, как правило, создает пару из электрона и дырки, которая редко рекомбинирует с испусканием фотона с большей энергией. Наоборот, чаще излучаются фотоны с меньшей энергией, а разница нагревает кристаллическую решетку материала. Кроме того, излученный фотон часто вновь поглощается материалом, что ведет к дополнительному нагреву.
В новом способе охлаждения слой полупроводника нужно расположить вблизи поверхности металла с вакуумным зазором около десяти нанометров. В такой слоистой конструкции могут существовать так называемые поверхностные плазмоны-поляритоны – кванты коллективных колебаний электромагнитного поля и свободных электронов в металле. Как подсчитал теоретик, пары из электрона и дырки в полупроводнике тогда смогут рекомбинировать, испуская вместо фотона такой экзотический плазмон-поляритон, который с вероятностью 99,9% поглотится именно в металле. Таким образом, энергию из слоя полупроводника можно будет перекачивать в металл, который уже придется охлаждать обычным кулером.
Расчеты показывают, что если в качестве полупроводника взять нитрид галлия, а металлический слой сделать из серебра, то общая эффективность такого холодильника составит около трех процентов. А этого уже достаточно для практических приложений. Причем полупроводник будет охлаждаться непосредственно и сразу во всем своем объеме, что значительно снизит в нем вредные перепады температур.