По правде говоря, хорошо осведомленный современный ученый никогда не делает метафизических допущений о природе материи. Я имею в виду по-настоящему разумного ученого, а не простого клерка от науки, решающего задачи. Я говорю о людях уровня Эйнштейна [5] или, скажем, Ванневера Буша*. Они понимают, что имеют дело с неким набором определений, пригодным по большей части только для математических формулировок. Опираясь на свои эксперименты, они выдвигают определенные гипотезы, благодаря которым эти опыты складываются в целостную концепцию. Подобные гипотезы оказываются хорошими, если приводят к таким дальнейшим экспериментам или наблюдениям, которые согласуются с гипотетическими предсказаниями и тем самым их подкрепляют. Эти гипотезы терпят крах, если не подтверждаются на практике. Один мой знакомый, физик-теоретик, высказал нечто очевидное для каждого математика: любое явление допускает потенциально бесконечное многообразие возможных объяснений. Я попробую вновь использовать математическую аналогию, чтобы прояснить эту мысль.
рис.5
Одним из простейших и прекраснейших примеров в истории науки может служить то, как Кеплер [6] выявил закон движения планет благодаря наблюдениям Тихо Браге [7], то есть определил, что орбиты обращающихся вокруг Солнца планет имеют почти эллиптическую форму.
Рис.6
В данном случае, если говорить о пространственных измерениях, он добился достаточно точного результата. Если вы знакомы с коническими сечениями (см. рис. 6) или уравнениями второй степени, решениями которых могут быть окружность, эллипс, парабола, гипербола или две пересекающиеся прямые, то вам известен и тот факт, что произвольные пять точек однозначно определяют одно из конических сечений.
В данном случае наблюдения показали, что орбиты планет действительно являются эллипсами, хотя и очень близки к окружностям. Несмотря на это, пример послужит неплохой иллюстрацией.
Предположим, некое уравнение описывает выбранную вами гипотезу, постулированное толкование. Если вы наложите ограничение, требующее, чтобы решением была кривая второй степени, то пять точек будут определять ее однозначно. Но что позволяет вам накладывать такое ограничение на результаты наблюдений?
Перенесем этот пример на любые результаты наблюдений при решении научной задачи. Неужели решением не может оказаться кривая высшей степени, не обязательно второй? Кривые бывают третьей, четвертой, пятой, n-ой степени, их количество бессчетно, и потому можно найти в буквальном смысле бесконечное число кривых, проходящих через те точки, которые получены в результате наблюдений. Таким образом, теоретически возможно построить гипотетическое толкование или теорию, которая объяснит любые факты научных измерений.