Выделяют следующие виды погрешностей:
1) абсолютная погрешность;
2) относительна погрешность;
3) приведенная погрешность;
4) основная погрешность;
5) дополнительная погрешность;
6) систематическая погрешность;
7) случайная погрешность;
8) инструментальная погрешность;
9) методическая погрешность;
10) личная погрешность;
11) статическая погрешность;
12) динамическая погрешность.
Погрешности измерений классифицируются по следующим признакам.
По способу математического выражения погрешности делятся на абсолютные погрешности и относительные погрешности.
По взаимодействию изменений во времени и входной величины погрешности делятся на статические погрешности и динамические погрешности.
По характеру появления погрешности делятся на систематические погрешности и случайные погрешности.
По характеру зависимости погрешности от влияющих величин погрешности делятся на основные и дополнительные.
По характеру зависимости погрешности от входной величины погрешности делятся на аддитивные и мультипликативные.
Абсолютная погрешность – это значение, вычисляемое как разность между значением величины, полученным в процессе измерений, и настоящим (действительным) значением данной величины.
Абсолютная погрешность вычисляется по следующей формуле:
ΔQ>n =Q>n −Q>0,
где AQ>n – абсолютная погрешность;
Q>n – значение некой величины, полученное в процессе измерения;
Q>0 – значение той же самой величины, принятое за базу сравнения (настоящее значение).
Абсолютная погрешность меры – это значение, вычисляемое как разность между числом, являющимся номинальным значением меры, и настоящим (действительным) значением воспроизводимой мерой величины.
Относительная погрешность – это число, отражающее степень точности измерения.
Относительная погрешность вычисляется по следующей формуле:
где ΔQ – абсолютная погрешность;
Q>0 – настоящее (действительное) значение измеряемой величины.
Относительная погрешность выражается в процентах.
Приведенная погрешность – это значение, вычисляемое как отношение значения абсолютной погрешности к нормирующему значению.
Нормирующее значение определяется следующим образом:
1) для средств измерений, для которых утверждено номинальное значение, это номинальное значение принимается за нормирующее значение;
2) для средств измерений, у которых нулевое значение располагается на краю шкалы измерения или вне шкалы, нормирующее значение принимается равным конечному значению из диапазона измерений. Исключением являются средства измерений с существенно неравномерной шкалой измерения;
3) для средств измерений, у которых нулевая отметка располагается внутри диапазона измерений, нормирующее значение принимается равным сумме конечных численных значений диапазона измерений;