Если бы путь Земли был вытянут сильнее
Вообразим же, что орбита Земли заметно вытянута и фокус делит ее большую полуось пополам. На рис. 19 изображена эта новая орбита. Земля по-прежнему бывает 1 января в точке А, ближайшей к Солнцу, а 1 июля в точке 5, наиболее удаленной. Так как FB втрое больше, чем FA, то в январе Солнце было бы втрое ближе к нам, чем в июле. Январский поперечник Солнца втрое превышал бы июльский, а количество посылаемого тепла было бы в январе в 9 раз больше, чем в июле (обратно пропорционально квадрату расстояния). Что осталось бы тогда от нашей северной зимы? Только то, что Солнце стояло бы низко на небе и дни были бы короткие, а ночи долгие. Но холодов не было бы: большая близость Солнца с избытком покрыла бы невыгодные условия освещения.
Рис. 19. Какую форму имела бы орбита Земли, если бы эксцентриситет земной орбиты был равен 0,5. В фокусе F – Солнце.
Сюда присоединится еще обстоятельство, вытекающее из второго закона Кеплера, который гласит, что площади, описываемые радиусом-вектором в равные промежутки времени, равны.
«Радиусом-вектором» орбиты называется прямая линия, соединяющая Солнце с планетой, в нашем случае – с Землей. Так как Земля перемещается по орбите, то движется и радиус-вектор, который описывает при этом некоторую площадь; закон Кеплера устанавливает, что части площади эллипса, описываемые в равные времена, равны между собой. В точках своего пути, близких к Солнцу, Земля должна двигаться по орбите быстрее, чем в точках, удаленных от Солнца; иначе площадь, описанная коротким радиусом-вектором, не могла бы равняться площади, образованной более длинным радиусом-вектором (рис. 20).
Рис. 20. Иллюстрация второго закона Кеплера: если дуги АВ, CD и EFпройдены планетой в одинаковые промежутки времени, то заштрихованные площади равны.
Применяя сказанное к нашей воображаемой орбите, заключаем, что в декабре – феврале, когда Земля значительно ближе к Солнцу, она должна двигаться по своей орбите быстрее, чем в июне – августе. Другими словами, зима должна на севере промчаться скоро, лето же, напротив, должно тянуться долго, как бы вознаграждая этим за скупо изливаемую Солнцем теплоту.
На рис. 21 дается более точное представление о продолжительности времен года при наших воображаемых условиях. Эллипс изображает форму новой земной орбиты (с эксцентриситетом 0,5). Числа 1—12 делят путь Земли на части, пробегаемые ею в равные промежутки времени; по закону Кеплера, доли эллипса, на которые он рассекается начерченными в нем радиусами-векторами, равны по площади.