Кризис аграрной цивилизации и генетически модифицированные организмы (Глазко) - страница 47

ДНК-технологии позволяют исследовать и направленно изменять материал наследственности на разных уровнях его организации — генном, хромосомном, геномном, популяционно-генетическом. Интересно, что в смысле управления наследственностью «генетическую инженерию» использовали в течение тысячелетий безымянные селекционеры, благодаря которым еще в эпоху неолита и было введено в культуру абсолютное большинство возделываемых в настоящее время видов растений.

Переходя непосредственно к описанию методов генетической трансформации, отметим, что на сегодняшний день молекулярная генетика располагает значительным набором знаний и приемов для осуществления переноса генов из одних организмов в другие. Технология создания трансгенных растений включает большое количество этапов, среди которых можно выделить: получение целевых генов, создание векторов; трансформацию растительных клеток; подтверждение трансформации молекулярно-биологическими методами — обнаружение функционирующего целевого гена; регенерация целого растения из трансформированных клеток.

Подготовительный этап: конструирование вектора. На первом этапе конструирования рекомбинантной ДНК готовят вставки, пригодные для последующего соединения с вектором. В настоящее время наиболее часто используются 3 метода их получения: из фрагментов геномной ДНК; путем ферментативного или химического синтеза фрагментов ДНК; из сегментов ДНК, полученных с помощью ферментативного копирования РНК-матрицы in vitro.

В качестве вектора, которым может быть любой небольшой внехромосомный элемент (плазмида, ДНК фага или вируса), для трансформации растительных клеток обычно используют бактериальные плазмиды.

Следует отметить, что в большинстве случаев целевой ген подвергается модификации, поскольку, несмотря на универсальность генетического кода (он одинаков для всех организмов вне зависимости от уровня их организации), состав триплетов, кодирующих одни и те же аминокислоты у организмов, принадлежащих к разным видам, имеет некоторые отличия.

Замена кодонов никоим образом не сказывается на первичной структуре белка, в то время как экспрессия гена может быть усилена в сотни раз. Необходимый уровень экспрессии целевого гена в клетках растения достигается посредством использования соответствующих регуляторных элементов, контролирующих работу гена, — промоторов и терминаторов.

Следует отметить, что среди известных в настоящее время промоторов один из самых сильных — промотор 35S вируса мозаики цветной капусты, поэтому в большинстве случаев именно его используют в качестве регулятора экспрессии целевого гена.