Гудрайк нашел объяснение, которое и сегодня остается верным. В журнале «Philosophical Transactions» Лондонского Королевского общества одаренный молодой человек (как мы уже знаем, глухонемой от рождения) писал: «Если бы не было еще слишком рано высказывать догадки о причинах этого явления, я мог бы предположить, что едва ли ответственным за него может быть нечто иное, нежели либо прохождение перед звездой крупного небесного тела, обращающегося вокруг Алголя, либо же собственное движение Алголя, в ходе которого к Земле регулярно поворачивается его сторона, покрытая пятнами или чем-то подобным». Но понадобилось еще сто лет, чтобы ему поверили. Сегодня мы знаем, что первое объяснение было верным. Звезда-спутник с периодом обращения 69 часов регулярно проходит перед Алголем и частично затмевает его.
Это явление каждый может наблюдать невооруженным глазом нужно только знать, где находится на небе Алголь. Звезда эта почти всегда яркая, и обычно в ней не обнаруживается ничего особенного. Время от времени, однако, Алголь оказывается столь же слабым, как и находящаяся по соседству слабая звездочка Ро Персея.
Сегодня известно много переменных звезд, которые, подобно Алголю, периодически затмеваются своими спутниками в начале этой книги мы уже упоминали о затменно-переменной звезде Дзета Возничего. Все затменно-переменные представляют собой очень тесные двойные системы и находятся так далеко, что даже в лучший телескоп не удается увидеть каждую из звезд по отдельности. Однако по тому, как протекает затмение, можно много сказать о звездной паре. И го, что удалось узнать о звездах типа Алголя, противоречило, казалось, всему, что считалось известным о развитии звезд.
Сложные взаимодействия в двойных звездах
На вещество звезды, вокруг которой обращается звезда-спутник, действует не только собственная сила тяжести, направленная к центру, но и сила притяжения со стороны второй звезды. Кроме того, существенную роль играет и центробежная сила, обусловленная собственным вращением звезды.
Поэтому сила притяжения звезды, вблизи которой находится другая звезда, изменяется в ее окрестности весьма сложным образом. К счастью, еще в середине прошлого века работавший в Монпелье французский математик Эдуард Рош нашел ряд упрощений, которыми и поныне пользуются астрофизики.
У одиночной звезды все окружающее вещество под действием силы притяжения звезды устремляется к ее центру. В двойной же звездной системе в любой точке пространства действует также сила притяжения второй звезды, направленная к ее центру. В области, где эти силы действуют в противоположных направлениях (вдоль линии, соединяющей центры звезд), силы притяжения двух звезд могут полностью или частично компенсировать друг друга (рис. 9.1). Обозначим наши звезды цифрами 1 и 2. Поскольку сила притяжения быстро убывает с увеличением расстояния до гравитирующей массы, в непосредственной близости к звезде 1 преобладает ее сила притяжения, а вблизи звезды 2 верх берет притяжение второй звезды. Для каждой из звезд поэтому можно определить так называемый «разрешенный» объем, из которого весь находящийся в нем газ будет только притягиваться к этой звезде. Внутри этого объема, который часто называют полостью Роша, преобладает сила притяжения соответствующей звезды. При сечении полостей Роша плоскостью, проходящей через обе звезды, получится кривая, показанная штриховой линией на рис. 9.1. При расчетах полостей Роша учитываются и центробежные силы, действующие на газ, вовлеченный в собственное вращение звезды. Вещество, находящееся за пределами полостей Роша обеих звезд, может выбрасываться центробежными силами из системы или притягиваться к любой из звезд. Но, попав в полость Роша, вещество должно упасть на соответствующую звезду. Размеры полостей Роша зависят от массы каждой из звезд и расстояния между ними и для хорошо известных двойных звезд легко рассчитываются.