«Бархатно-черный круглый предмет неподвижно и свободно парил в пространстве. Предмет, собственно, не был похож на шар, а производил скорее впечатление зияющей дыры. И был он не чем иным, как дырой… Тут же поднялся ветер, который становился все сильнее и сильнее, поскольку воздух из комнаты засасывался в шар. Обрывки бумаги, перчатки, дамские вуали все летело туда. Да, и когда один из полицейских ударил зловещую дыру саблей, клинок исчез, будто расплавившись».
Густав Мейринк, «Черный шар», 1913
Пульсары и рентгеновские источники подтверждают, что в природе существуют нейтронные звезды. Одна из таких звезд осталась в Крабовидной туманности после взрыва Сверхновой. Но что привело к этому взрыву в 1054 году? Рано или поздно взрыв Сверхновой должен произойти и в нашей Галактике, так сказать, у нас перед глазами.[26] Тогда бы мы узнали, что же там взрывается; на старых снимках неба мы нашли бы ту звезду, на месте которой в облаке останков крутится, как волчок, крошечная нейтронная звезда.
Пока что, однако, нам приходится лишь строить догадки. Изучая компьютерные модели звезд на поздней стадии эволюции, мы можем попытаться ответить на вопрос, каким образом звезда приходит к катастрофе.
«Железная катастрофа» массивных звезд
У массивных звезд, масса которых превышает солнечную больше чем в десять раз, эволюция протекает очень быстро. Водород в них расходуется уже через несколько миллионов лет. Тогда начинает гореть гелий, превращаясь в углерод, а вскоре и атомы углерода начинают превращаться в атомы с более высокими атомными номерами. Во всех этих ядерных реакциях высвобождается энергия, однако ядерные процессы становятся все менее эффективными. Чтобы излучение звезды поддерживалось на одном и том же уровне, реакции должны протекать все быстрее и быстрее. Быстро сменяя друг друга, образуются все более тяжелые атомы. Может ли так продолжаться бесконечно?
Оказывается, в природе превращения элементов заканчиваются на железе. Мы уже видели, что чем тяжелее элемент, получающийся в результате термоядерной реакции, тем ниже выделяемая энергия. Когда превращения доходят до железа, ядерный реактор звезды останавливается. При слиянии ядра железа с ядрами других элементов, имеющихся в звезде, энергия уже не выделяется: наоборот, для этого требуется дополнительная энергия. И напротив, чтобы расколоть ядро железа, требуется затратить энергию.