История греческой философии в её связи с наукой (Гайденко) - страница 130

В этом отрывке Платон прежде всего вводит геометрическое понятие тела: это глубина, ограниченная поверхностью, т.е. стереометрический объект. Затем он поясняет геометрическое понятие поверхности: поверхность "состоит" из треугольников. Что касается треугольников, то Платон в качестве их исходной ("образцовой") формы указывает два вида: прямоугольные равнобедренные треугольники (с соотношением сторон 1:1: EMBED Equation.2 ) и треугольники, представляющие собой половину равностороннего треугольника, в которых гипотенуза вдвое больше одного из катетов; соотношение сторон здесь 1: EQ \R(3) :2.

Из этих треугольников и образованы тела, которые составляют математическую сущность огня, воздуха, воды и земли. Три из них "слагаются из одного и того же неравнобедренного треугольника, и только четвертый род - из равнобедренного... Начнем с первого вида, состоящего из самых малых частей: его первоначало - треугольник, у которого гипотенуза вдвое длиннее меньшего катета. Если такие треугольники сложить, совмещая их гипотенузы, и повторить такое действие трижды, притом так, чтобы меньшие катеты и гипотенузы сошлись в одной точке как в своем центре, то из шестикратного числа треугольников будет рожден один, и он будет равносторонним (рис. 6). Когда же четыре равносторонних треугольника окажутся соединенными в три двугранных угла, они образуют один объемный угол, а именно такой, который занимает место вслед за самым тупым из плоских углов. Завершив построение четырех таких углов, мы получаем первый объемный вид, имеющий свойство делить всю описанную около него сферу на равные и подобные части" (рис. 7).

Рис. 6 Рис. 7

"Первый объемный вид", т.е. первое стереометрическое тело - это простейшая пирамида - четырехгранник (тетраэдр), построение которой и описывает Платон. Аналогичным образом строятся и два других правильных многогранника - восьмигранник (октаэдр) и двадцатигранник (икосаэдр). Четвертое же "тело" строится из равнобедренных треугольников, "и притом так, что четыре треугольника, прямые углы которых встречались в одном центре, образовывали квадрат; а из сложения шести квадратов возникало восемь объемных углов, каждый из которых гармонично охватывался тремя плоскими прямыми углами. Составившееся таким образом тело имело очертания куба, наделенного шестью квадратными плоскими гранями".

Платон здесь, собственно, обращается к открытию Теэтета, построившего четыре правильных многогранника, что, по-видимому, вызвало восхищение Платона и произвело на него сильное впечатление. Платон, видимо, впервые решил с помощью открытия Теэтета дать объяснение математической "структуры" космических элементов, т.е. применить это открытие в своей "космогонии". Это его тем более привлекало, что возникала возможность установить пропорциональные отношения между стихиями, чего никто до него, вероятно, не пытался сделать, но что было признано главным средством познания объектов в рамках математической программы пифагорейцев и платоников. "Если нам удастся попасть в точку, - говорит Платон, - у нас в руках будет истина о рождении земли и огня, а равно и тех стихий, что стоят между ними как средние члены пропорции" (курсив мой. - П.Г.).