История греческой философии в её связи с наукой (Гайденко) - страница 25

К такому выводу относительно пифагорейской математики приходит известный историк математики Оскар Беккер. "У истоков греческой математики, - пишет он, - вероятно, начиная еще с VI века, обнаруживается своеобразный способ рассмотрения, который можно охарактеризовать как полуарифметический полугеометрический. Он состоит в использовании камешков (f¤joi) одинаковой величины и формы (круглых и квадратных), которыми выкладываются фигуры"59.

Действительно, трудно найти этому методу построения фигур из чисел-камешков однозначную характеристику; Г.Г. Цейтен называет его "геометрической арифметикой"60. Видимо, этот метод предполагает допущение, что тела состоят из множества такого рода точечных единиц-монад. При этом, как сообщает Аристотель, единица (mon?j) рассматривалась пифагорейцами как точка, не наделенная особым положением (stigmh ?JetoV), а точка (stigm ) - как единица, имеющая положение (mon?V JЪsin Ьcousa)61.

Открытие

несоизмеримости

Трудно установить, кем и когда была открыта несоизмеримость, но это открытие сыграло важную роль в становлении математики как теоретической науки, ибо вызвало целый переворот в математическом мышлении и заставило пересмотреть многие из представлений, которые вначале казались само собой разумеющимися62.

Следует заметить, однако, что открытие несоизмеримости могло иметь место только там и тогда, где и когда уже возникли основные контуры математики как связной теоретической системы мышления. Ведь только тогда может возникнуть удивление, что дело обстоит не так, как следовало ожидать, если уже есть представление о том, как должно обстоять дело. Не случайно открытие несоизмеримости принадлежит именно грекам, хотя задачи на извлечение квадратных корней, в том числе и EMBED Equation.2 , решались уже в древневавилонской математике, составлялись таблицы приближенных значений корней. По-видимому, открытие несоизмеримости было сделано именно потому, что пифагорейцы с энтузиазмом искали подтверждения главного тезиса их учения "все есть число".

Можно допустить, что пифагорейцы обнаружили несоизмеримость при попытке либо арифметически определить такую дробь, квадрат которой равен 2 (т.е. арифметически вычислить сторону квадрата, площадь которого равна 2); либо геометрически при отыскании общей меры стороны и диагонали квадрата; либо, наконец, в теории музыки, пытаясь разделить октаву пополам, т.е. найти среднее геометрическое между 1 и 2. В любом случае задача предстала перед ними в виде отыскания величины, квадрат которой равен 263.

Несоизмеримость диагонали квадрата со стороной, т.е. иррациональность EMBED Equation.2 , пифагорейцы доказывали, опираясь на главную, с их точки зрения, "онтологическую" характеристику чисел, а именно на деление их на четные и нечетные; доказательство велось от противного: если допустить соизмеримость диагонали и стороны, то придется признать нечетное число равным четному64. Признанию несоизмеримости, однако, предшествовали, по-видимому, попытки преодолеть возникшее затруднение, ибо обнаружение невыразимости в числах отношения диагонали к стороне квадрата наносило удар по основному убеждению пифагорейцев, что "все есть число". Открытие иррациональности, т.е. отношений, не выражаемых <целыми> числами, вызвало, видимо, первый кризис оснований математики и нанесло удар по философии пифагорейцев. Ибо целое число - ?riJm"V - лежало, согласно Пифагору и его последователям, в основе мироздания; поэтому все пропорции в мире должны были быть выразимы в целых числах. Эта - исторически первая - теория чисел теперь оказалась поставленной под вопрос.