Машиностроители научились сопоставлять величину перемещения поплавка по шкале с размерами измеряемых деталей (такое сопоставление называется «градуировкой» шкалы). Благодаря этому шкала воздушного микрометра не только показывает, насколько правильно, по допускам, изготовлена деталь, но и дает ее прямой размер. И, самое главное, этот размер указывается с удивительной точностью.
Вспомните, как работают рычажные и рычажно-оптические измерительные приборы. Они так устроены, что ничтожное изменение размера проверяемой детали вызывает в 50, 100, 200, 500 и даже в 1000 раз большее передвижение стрелки указателя по измерительной шкале. Поэтому легко отсчитываются изменения размеров даже в 0,5 микрона. Существуют и такие рычажно-оптические {161} приборы, в которых перемещение указателя в 16 000 раз больше величины изменения размера проверяемой детали Это значит, что можно отсчитывать изменение размера с точностью до 0,000025 миллиметра (до >1/>40 доли микрона, или до 25 миллимикронов).
>Воздушный микрометр с окрашенным водяным столбиком (вместо воздушного поплавка): 1 — головка с выходным отверстием для воздушной струи; 2 — универсальная стойка; 3 — душный микрометр и проверяемый предмет; 4 — столик для проверяемых деталей; 5 — шкала; 6 — трубка с водяным столбиком
Воздушный микрометр отличается тем, что его поплавок также перемещается по шкале на расстояние, в 10—12 тысяч раз большее, чем величина, на которую изменился зазор между срезом сопла измерительной головки и поверхностью проверяемой детали. Поэтому и этот прибор измеряет с такой же точностью.
Бывают и такие воз душные микрометры, в устройстве которых поплавок заменен подкрашенной водой в тонкой трубке. Эта трубка соединена с сосудом, в котором меняется давление подаваемого воздуха; уровень воды — в зависимости от этого давления — понижается или повышается. Рядом с трубкой — градуированная шкала. Величина перемещения уровня воды в трубке отмечается делениями шкалы. Именно такой воздушный микрометр и применяется, когда необходимо измерить величину той тончайшей воздушной прослойки, которая служит «смазкой» в подшипнике машины, о которой шла речь. {162}
Еще в начале XX столетия для тончайших измерений в физике понадобилась единица измерения пространства, с помощью которой можно было бы выражать величины расстояний между атомами внутри вещества, длины световых волн и, особенно, рентгеновых лучей. Такая единица измерения была установлена размером в одну десяти-миллионную миллиметра — ее назвали «ангстрем». Так, например, длину волны красного света кадмия, равную 0,644 микрона, удобнее выразить в ангстремах: 6,44 ангстрема. Казалось, что применяемые в технике измерительные приборы никогда не «дойдут» до такой точности. Однако в наше время показания наиболее чувствительных рычажно-оптических приборов и воздушных микрометров можно выразить и в ангстремах. В самом деле, ведь 0,000025 миллиметра — это 250 ангстремов.