О станках и калибрах (Перля) - страница 76

Ванна с двойными стенками наполнена дестиллированной водой. Пространство между стенками также наполнено водой, которая служит для регулирования температуры воды в ванне. Внутри на специальных опорах покоятся оба сличаемых эталона. Ванна укреплена на тележке, позволяющей осуществлять передвижения в направлении, перпендикулярном длине сличаемых мер. По обеим сторонам ванны на каменных опорах укреплены в вертикальном положении два микроскопа. Оба эталона по очереди подводят под окуляры этих микроскопов и производят два отсчета для двух штрихов образцового метра. Затем подводят проверяемый метр и производят такие же два отсчета для его штрихов. Результаты сравнивают и определяют фактическую длину проверяемого метра. {112}

На протяжении нескольких десятилетий усилия науки направлены были к тому, чтобы добиться предельной точности в установлении величины метра — этой всеобщей международной единицы длины.

Но лишь в конце XIX века ученые получили возможность, используя длину световых волн, производить измерения с настолько высокой степенью точности, что многократные измерения одной и той же величины не показали какого-либо существенного различия. Метр, выраженный в длинах этих волн, получил ту устойчивость, к которой стремились ученые на протяжении многих лет.

Глава II. НЕИЗМЕННАЯ МЕРА

Немного физики

Чтобы понять, в чем состоит способ измерения с помощью длины световых волн, кратко напомним некоторые сведения из физики света.

Представим себе темную комнату с небольшим круглым отверстием в одной стене и белым экраном на противоположной. Если в отверстие направить пучок параллельных солнечных лучей, то на экране появится световое круглое пятно. На пути этого пучка лучей поместим стеклянную призму. Лучи, проходя через призму, изменят свой путь и упадут на стену уже в другом месте. Это явление носит название преломления лучей света. Призму следует поставить так, чтобы преломившиеся лучи шли внутри призмы параллельно ее основанию. На экране мы отметим еще одну странность — на нем не будет уже белого круглого пятна; вместо него появится разноцветная полоса. Верхний край полосы будет фиолетового цвета, нижний — тёмнокрасного. Между этими цветами будет еще много разных цветов, но главных, наиболее резко отличимых будет еще шесть: синий, голубой, зеленый, желтый, оранжевый, красный. Вся разноцветная полоса носит название солнечного спектра; его появление вызвано разложением луча белого солнечного света на составляющие его разноцветные лучи.

Для более четкого воспроизведения спектра существуют специальные приборы — спектроскопы. С помощью такого прибора ученый Фраунгофер открыл в 1814 году, что солнечный спектр пересечен множеством темных линий. Они получили название фраунгоферовых линий. Их положение в спектре неизменно. Наиболее заметные из {113} фраунгоферовых линий (всего их насчитывают несколько тысяч) разделяют спектр на уже известные восемь частей: тёмнокрасную, светлокрасную, оранжевую, желтую, зеленую, голубую, синюю, фиолетовую.