Одураченные случайностью. Скрытая роль шанса в бизнесе и жизни (Талеб) - страница 125

Сравните такой процесс с тем, который моделируется чаще, то есть с урной, из которой игрок достает шары с замещением. Скажем, вы играете в рулетку и выигрываете. Увеличивает ли это ваши шансы на выигрыш? Нет. А в процессе Поля — да. Почему его трудно описать математически? Из-за нарушения предположения о независимости (то есть положения, когда следующая попытка не зависит от предыдущей). Для работы с (имеющимся) математическим аппаратом вероятности требуется независимость.

Что пошло не так с развитием экономики как науки? Ответ: была группа умных людей, почувствовавших потребность использовать методы математики только для того, чтобы показать: они мыслят строго, они занимаются наукой. Кто-то спешно решил ввести в нее методы экономического моделирования (обвиняемые — Леон Вальрас, Жерар Дебре, Пол Самуэльсон), не понимая того факта, что либо уровень математики, которым они пользовались, был слишком ограниченным для класса проблем, с которыми они имели дело, либо, возможно, им следовало знать, что точность математического языка может заставить людей поверить в существование решений, которых на самом деле нет (вспомните Поппера и цену слишком серьезного отношения к науке). На самом деле математика, с которой они работали, не подходит для реального мира, может, потому, что нам нужен более богатый набор процессов. Но они отказывались признать, что, возможно, тогда лучше вообще обойтись без математики.

На помощь пришла так называемая теория сложности. Большой интерес вызвали работы ученых, специализировавшихся на нелинейных количественных методах, Меккой которых был институт Санта-Фе близ города Санта-Фе в штате Нью-Мексико (США). Понятно, что эти ученые много работали и обеспечили нас превосходными решениями в физике и лучшими моделями в социальных областях (хотя и не полностью удовлетворительными). И если они и не добились окончательного успеха, то просто потому, что математика играет в реальном мире второстепенную роль. Заметьте, что еще одним преимуществом симуляций методом Монте-Карло является возможность получить результат там, где математики сдаются и не могут нам помочь. Освобождая нас от уравнений, этот метод освобождает нас из ловушки подчинения математике. Как я сказал в третьей главе, в нашем мире случайности математика — лишь способ думать и размышлять, не более.


Наука о сетях

Изучение динамики сетей в последнее время растет как на дрожжах. Оно стало популярным после книги Малкольма Гладуэлла «Переломный момент»[46], в которой автор показывает, как поведение некоторых переменных величин, например эпидемий, чрезвычайно быстро расширяется после прохождения некоторого неопределенного критического уровня. (Как, скажем, любовь к кедам детей из бедных кварталов или распространение религиозных идей. При продаже книг наблюдается тот же эффект, она испытывает «взрывной» рост, как только передача информации о книге из уст в уста достигает определенного уровня.) Почему некоторые идеологии или религии расширяются, как пожар, а другие быстро угасают? Как появляются массовые увлечения? Как распространяются вирусы идей? Как только уходишь от конвенциональных моделей случайности («колоколообразное» семейство графиков), может произойти что-то серьезное. Почему у интернет-портала Google так много посетителей по сравнению с сайтом Национальной ассоциации ветеранов химической промышленности? Чем больше людей присоединилось к сети, тем выше вероятность, что кто-то еще услышит и присоединится, особенно если нет реальных ограничений на ее емкость. Обратите внимание, что иногда глупо искать точную «критическую точку», поскольку она нестабильна, узнать о ней невозможно, разве что постфактум, что часто и происходит. Может, эти «критические точки» не совсем точки, а последовательности (так называемый степенной закон Парето)? Хотя ясно, что мир производит кластеры, печально то, что их бывает слишком трудно предсказать (разве что в физике), чтобы принимать эти модели всерьез. И снова важным является знание о существовании нелинейности, а не попытки смоделировать ее. Ценность работы великого Бенуа Мандельброта во многом состоит в том, что он рассказал нам о «диком» виде случайности, о котором мы всегда будем знать мало (благодаря его нестабильным свойствам).