Математика. Поиск истины. (Клайн) - страница 169

Эйнштейн в своей работе по фотоэлектрическому эффекту (1905), в детали которой мы намеренно не будем входить, ибо это увело бы нас далеко в сторону, не только подтвердил формулу Планка, но и сумел найти ей применение. Свет, освещая поверхность металла, выбивает из нее электроны. Из гипотезы Планка следовало, что падающее на поверхность металла излучение состоит из квантов, каждый из которых несет энергию ħv. Энергия каждого вылетевшего из металла электрона пропорциональна ħv. Гипотеза квантов позволила Эйнштейну объяснить взаимодействие света и атомов, образующих поверхность металла. Выбивание электронов происходит только при достаточно высокой энергии квантов, т.е. при больших частотах, но не зависит от интенсивности света. Что же касается числа выбиваемых электронов, то оно действительно определяется интенсивностью света. Работы Планка и Эйнштейна вновь подняли проблему: из чего состоит электромагнитное излучение и, в частности, свет? Из волн или из частиц? К этой проблеме мы обратимся в дальнейшем. А пока заметим лишь то, что уже ясно из сказанного: электромагнитное излучение ведет себя и как волны, и как частицы.

Но вернемся к работам, связанным с изучением структуры атома. Модель Резерфорда не позволяла объяснить, почему электроны, обращающиеся вокруг ядра, не испускают света или энергии какого-нибудь другого вида, как того требует теория электромагнитного поля, и не падают по спирали на ядро. Нильс Хенрик Давид Бор (1885-1962) «вгляделся» в структуру атома пристальнее, чем его предшественники. Приняв за исходную планетарную модель Резерфорда, Бор на основании некоторых математических соображений постулировал, что электроны в атоме не излучают, если движутся по вполне определенным («разрешенным») орбитам подобно тому, как движутся планеты. Обращающийся вокруг атомного ядра электрон обладает энергией, а именно механической энергией, которую имеет любой объект, обращающийся вокруг центрального тела. Но стоит лишь электрону перейти с одной орбиты на другую, как он либо испускает, либо поглощает излучение. И испускание, и поглощение энергии происходят скачками. Каждый скачок представляет собой квант энергии, его величина кратна ħv. При поглощении атомом излучения электрон переходит с внутренней, более близкой к ядру, орбиты на внешнюю, — более далекую от ядра. При обратном переходе, напротив, атом излучает кванты, или фотоны.

Теория Бора объясняла далеко не все результаты, касающиеся частот испускаемого атомами излучения, поэтому работа по выяснению структуры атома продолжалась.