Математика. Поиск истины. (Клайн) - страница 193

Математическая мысль без устали бьется о скалистый берег, препятствующий ее проникновению на новые территории. Но даже гранитные утесы не выдерживают ее могучего натиска, не ослабевающего на протяжении столетий, и рушатся, открывая перед математикой новые просторы.

XII

Непостижимая эффективность математики

Вечная загадка, мира — его познаваемость.{14}

Альберт Эйнштейн

Жизнь — это искусство делать верные выводы из неверных посылок.

Сэмюэл Батлер

Поскольку природу математики и ее взаимосвязь с физическим миром оценивают по-разному, нередко с взаимоисключающих позиций, мы не можем обойти молчанием вопрос о том, почему математика вообще действенна. Нельзя не признать, что полного соответствия между математикой и физической реальностью не существует. Однако немалые успехи математики в описании физически реальных явлений — будь то электромагнитные волны, эффекты, предсказанные теорией относительности, математическая интерпретация того немногого, что доступно наблюдению на атомном уровне, и даже в свое время ньютоновская теория тяготения, не говоря о сотнях других достижений, — требуют какого-то объяснения.

Итак, человек стоит перед двойной загадкой. Почему в тех случаях, когда физическое явление понято нами и мы приняли соответствующие аксиомы, сотни следствий, полученных из них, оказываются столь же применимыми к реальному миру, как и сами аксиомы? Согласуется ли природа с человеческой логикой? Не менее важен и другой вопрос: почему математика эффективна и при описании тех физических явлений, которые непонятны для нас? От этих вопросов невозможно отмахнуться. Слишком многое в современной науке и технике зависит от математики. Очевидно, в ней скрыты какие-то силы и ресурсы.

В Древней Греции, где математика сводилась в основном к геометрии, а приложения ее были весьма ограничены, мыслители пытались ответить на поставленные выше вопросы, однако по современным стандартам эти ответы чрезмерно упрощены и весьма догматичны. Ученым XVI-XVIII вв. ответ на вопрос, почему математика столь эффективна, также казался простым и ясным. Полностью разделяя убежденность древних греков в том, что мир устроен на математических принципах, и принимая средневековые представления, гласившие, что мир был создан на математических принципах не кем иным, как Богом, они видели в математике путь к познанию истин о природе. Иначе говоря, превратив Бога в ревностного и непогрешимого математика, стоящего над всем миром, средневековые мыслители как бы отождествили поиск математических законов природы с религиозными исканиями. Изучение природы стало изучением слова божьего, его деяний и его воли. Гармония мира в их глазах была проявлением математической структуры, которой Бог наделил мир при сотворении. Именно он заложил в мир тот строгий математический порядок, познание которого дается нам с таким трудом. Математическое знание почиталось абсолютной истиной, как любая строка Священного писания. Более того, математическое знание становилось в чем-то выше Священного писания, ибо по поводу толкования тех или иных мест в Священном писании возникало немало разногласий, тогда как относительно математических истин не могло быть ни малейших споров.