= 44,1 м.
Если обе части формулы (3) разделить на 4,9, а затем извлечь из них квадратные корни, то окажется, что время t, за которое свободно падающее тело проходит путь s, задается формулой t = √>s/>4,9. Обратите внимание на то, что масса падающего тела в эту формулу не входит. Таким образом, мы видим, что все свободно падающие тела за равное время проходят одинаковое расстояние. Считается, что к такому заключению Галилей пришел, сбрасывая тела различной массы с Пизанской башни. Однако многие люди до сих пор с трудом верят в то, что кусочек свинца и легкое перышко, если их сбросить с одинаковой высоты в откачанном до глубокого вакуума баллоне, одновременно упадут на дно.
Ускорение 9,8 м/с>2, с которым на Земле движутся все свободно падающие тела, обусловлено силой земного тяготения, или гравитацией. Когда говорят о силе тяжести (точнее ее численной величине) применительно к предметам, находящимся вблизи поверхности Земли, ее обычно называют весом. Хотя сам Галилей не связывал между собой вес и массу, следует заметить, что вес P любого тела на Земле пропорционален его массе m. Численное значение коэффициента пропорциональности g зависит от выбора единиц. Таким образом, вес P и масса m любого тела на Земле связаны между собой соотношением
Как видим, два различных свойства тела — вес и масса — связаны между собой очень просто: вес P в g раз больше массы m. Простота и неизменность соотношения (4) приводят к тому, что мы часто путаем эти два свойства, хотя вес и массу тела необходимо четко различать. Масса — это свойство тел сопротивляться изменению скорости как по величине, так и по направлению, вес — численное значение силы, с которой Земля притягивает данное тело. Если тело покоится на гладкой горизонтальной поверхности, то поверхность противодействует силе тяжести. Следовательно, если рассматривать движение тела по поверхности (без трения), то его вес особой роли не играет. Но масса тела весьма существенна. В следующей главе мы увидим, сколь важно проводить различие между массой и весом.
Декарту, философу глубокому и весьма авторитетному, мы обязаны тем, что начиная с XVII в. математика вышла на передний край науки, и это позволило человечеству открыть особенности многих явлений природы, которые, не будь математики, так и остались бы неизвестными.
Мы могли бы рассказать о многих конкретных математических достижениях Галилея, например о предложенном им математическом описании движения свободно падающего тела, но для нас наибольший интерес представляет его методология. Своей работой «Беседы и математические доказательства, касающиеся двух новых отраслей науки» (1638) Галилей направил физическую науку по математическому пути, заложил основы современной механики и создал прообраз современной научной мысли. Как мы далее увидим, Ньютон, восприняв методологию Галилея, дал непревзойденные доказательства ее эффективности.