Великий замысел (Хокинг, Млодинов) - страница 48

Так как ранее наблюдаемое свидетельство также было не способно поддержать GUTbi, большинство физиков приняло специальную теорию, названную стандартной моделью, которая включает объединительную теорию электрослабых взаимодействий и QCD как теорию сильных взаимодействий. Но в стандартной модели электрослабые и сильные взаимодействия действуют отдельно и на самом деле не объединены. Стандартная модель очень эффективна и согласуется со всеми наблюдамыми на сегодняшний день свидетельствами, но она, в конечном счете, неудовлетворительна, потому что кроме того, что она не объединяет электрослабые и сильные взаимодействия, она не включает гравитацию.

Может оказаться трудным объединить сильные взаимодействия с электромагнитными и слабыми взаимодействиями, но эти проблемы — ничто по сравнению с проблемой слияния гравитации с тремя другими или даже создания отдельной квантовой теории гравитации. Причина, по которой оказалось настолько трудным создать квантовую теорию гравитации, имеет отношение к принципу неопределенности Гейзенберга, который мы обсуждали в Главе 4. Это не очевидно, но оказывается, что с учетом этого принципа величина поля и скорость его изменения играют такую же роль, как положение и скорость частицы. Таким образом, чем точнее определено одно, тем менее точно может быть определено другое. Важное следствие этого в том, что нет такой вещи как пустота. Это потому что пустота означает, что и величина поля и скорость его изменения строго нулевые. (Если бы скорость изменения поля была не нулевой, то место не оставалось бы пустым). Так как принцип неопределенности не позволяет величине поля и скорости изменения быть точными, космос вовсе не пуст. У него может быть состояние минимума энергии, названное вакуумом, но это состояние подвержено так называемому квантовому дрожанию или флуктуациям вакуума — частицы и поля дрожат туда-сюда относительно существования.

Можно представить флуктуации вакуума как пару частиц, которые одновременно появляются в какой-то момент, расходятся, а затем объединяются и аннигилируют друг друга. Выраженные диаграммами Фейнмана, они представляют собой замкнутые контуры. Эти частицы называют виртуальными частицами. В отличие от реальных, виртуальные частицы не могут наблюдаться непосредственно детектором частиц. Однако их косвенные эффекты, такие как небольшие изменения энергии электронных орбит, могут быть измерены и согласуются с теоретическими предсказаниями до замечательной степени точности. Проблема состоит в том, что виртуальные частицы имеют энергию, и поскольку существует бесконечное число виртуальных пар, у них было бы бесконечное количество энергии. Согласно общей относительности, это означает, что они искривили бы Вселенную к бесконечно малый размер, чего очевидно не происходит!