Из ложности одного суждения следует истинность другого, но из истинности одного из них может следовать как истинность, так и ложность другого суждения. Истинными могут быть оба суждения. Напр., из ложного суждения «Некоторые врачи не имеют медицинского образования» следует истинное суждение «Некоторые врачи имеют медицинское образование», из истинного суждения «Некоторые свидетели допрошены» следует суждение «Некоторые свидетели не допрошены», которое может быть как истинным, так и ложным.
Таким образом, субконтрарные суждения не могут быть вместе ложными; по крайней мере одно из них истинно:
⌉I → О; ⌉0 →I; I → (О ∨ ⌉О); O → (I ∨ ⌉1).
Отношение подчинения (А-I, Е-О). Из истинности подчиняющего суждения следует истинность подчиненного суждения, но не наоборот: из истинности подчиненного суждения истинность подчиняющего суждения не следует, оно может быть истинным, но может быть ложным. Напр., из истинности подчиняющего суждения А «Все врачи имеют медицинское образование» следует истинность подчиненного ему суждения I «Некоторые врачи имеют медицинское образование». Из истинного подчиненного суждения «Некоторые свидетели допрошены» нельзя с необходимостью утверждать об истинности подчиняющего суждения «Все свидетели допрошены»:
А → I; Е → О; I → (А ∨ 1 А); О → (Е ∨ 1Е).
Из ложности подчиненного суждения следует ложность подчиняющего суждения, но не наоборот: из ложности подчиняющего суждения ложность подчиненного с необходимостью не следует; оно может быть истинным, но может быть и ложным. Напр., из ложности подчиненного суждения (О) «Некоторые народы не имеют права на самоопределение» следует ложность подчиняющего суждения (Е) «Ни один народ не имеет права на самоопределение». Если ложным является подчиняющее суждение (А) «Все свидетели допрошены», то подчиненное ему суждение (I) «Некоторые свидетели допрошены» может быть истинным, но может быть ложным (возможно, что ни один свидетель не допрошен).
В логическом квадрате слово «некоторые» употребляется в значении «по крайней мере, некоторые».
⌉I →⌉ А; ⌉О → ⌉Е; ⌉А → (I ∨ ⌉I); ⌉E→ (O ∨ ⌉0).
42. ПРОСТОЙ КАТЕГОРИЧЕСКИЙ СИЛЛОГИЗМ, ЕГО СТРУКТУРА И АКСИОМА
Простой категорический силлогизм состоит из трех категорических суждений, два из которых являются посылками, а третье – заключением. Напр.,
«Обвиняемый имеет право на защиту.
Гусев – обвиняемый.
Гусев имеет право на защиту».
Расчленим суждения, из которых состоит силлогизм, на понятия. Этих понятий три, причем каждое из них входит в состав двух суждений: «Обвиняемый» – в 1-е (посылку) как субъект и во 2-е (посылку) как предикат; «имеет право на защиту» – в 1-е (посылку) и в 3-е (заключение) как их предикаты; «Гусев» – во 2-е (посылку) и в 3-е (заключение) как их субъекты.