Есть идея! (Гарднер) - страница 96

). Как нетрудно проверить, общая буква имеется лишь у трех слов, расположенных по горизонталям, вертикалям и диагоналям. Тем самым доказано, что играть в слова означает по существу играть в «крестики-нолики», и наоборот (или в 15).

Попробуйте подобрать другие 9 слов для игры. Разумеется, отнюдь не обязательно играть именно в слова родного языка. С тем же успехом можно воспользоваться и абстрактными символами, как это сделано на рис. 3.

Еще лучше играть во все эти игры, записав слова, знаки или цифры на 9 карточках. Разложив точки на столе исписанной стороной вверх, игроки могут по очереди брать по одной карточке до тех пор, пока одни из них не выиграет.

Разобравшись в изоморфизме игры в 15, «крестики-нолики» и игры в слова, приступим к новой игре — на дорожной сети. В нее играют на карте дорог, изображенной на рис. 4.

Между восемью городами проложены дороги. Вооружившись цветными карандашами (один игрок пусть выберет красный карандаш, а другой — синий), игроки по очереди закрашивают по одной дороге (каждую дорогу необходимо закрашивать целиком). Обратите внимание, что некоторые дороги проходят через города не обрываясь. В таких случаях закрашивать дорогу нужно не только до ближайшего города, а на всем ее протяжении. Выигрывает тот, кому первым удастся закрасить три дороги, ведущие в один и тот же город. На первый взгляд кажется, что новая игра не имеет ни малейшего отношения к трем уже рассмотренным нами играм. В действительности же и она изоморфна игре в «крестики-нолики»!

Чтобы установить изоморфизм, достаточно перенумеровать дороги так, как показано на рис. 4. Каждая дорога соответствует клетке магического квадрата, помеченной тем же числом. Каждый город на карте соответствует горизонтали, вертикали или диагонали в магическом квадрате. Как и в предыдущих случаях, изоморфизм полный. Всякий, кто умеет на гроссмейстерском уровне играть в «крестики-нолики», не будет знать горечи поражений и в новой игре.

На рис. 5 изображен один из 880 различных (не переходящих друг в друга под действием поворотов и отражений) магических квадратов 4×4. Постоянная этого квадрата (сумма чисел, стоящих на любой горизонтали, вертикали и диагонали) равна 34. Может ли такой квадрат служить ключом для беспроигрышной игры в 34, то есть игры, в которой игроки по очереди выбирают число от 1 до 16 (ни одно число не разрешается выбирать дважды) до тех пор, пока у одного из игроков не наберется четыре числа, дающие в сумме 34. Изоморфна ли игра в 34 игре в «крестики-нолики» на магическом квадрате, изображенном на рис.