Лекции по физике 4 (Фейнман) - страница 23

обозначить скорость, необходимую для того, чтобы подняться на высоту h(кинетическая энергия mu>2/2=mgh), то число молекул в секунду, поднимающихся с ниж­ней плоскости строго вверх и имеющих составляющую скорости, большую чем u, в точности равно числу молекул, пересекающих верхнюю плоскость с любой вертикальной составляющей скорости. Те молекулы, вертикальная скорость которых не превышает и, не

достигают верхней плоскости. Таким об­разом,


Но число молекул, пересекающих hс любой скоростью, большей нуля, меньше числа молекул, пересекающих нижний уровень с любой скоростью, большей нуля, хотя бы потому, что внизу больше атомов. Вот и все, что нам нужно. Мы уже знаем, что распределение молекул по скоростям на всех высо­тах одинаково, ведь мы уже выяснили, что температура во всей атмосфере одинакова. Но поскольку распределение ско­ростей всюду одинаково и число атомов, пересекающих нижний уровень, больше, то ясно, что отношение n>>0(h) (числа ато­мов, пересекающих высоту hс положительной скоростью) и n>>0(0) (числа атомов, пересекающих с положительной ско­ростью высоту 0) равно отношению плотностей на этих высотах, т. е. ехр(—mgh/kT). Но n>>0(h)=h>>>u(0), поэтому


поскольку >1/>2mu>2=mgh. Теперь скажем это своими словами: число молекул, пересекающих за 1 сек единичную площадь


на высоте 0 с вертикальной составляющей скорости, превышаю­щей и, равно произведению числа молекул, пересекающих эту площадку со скоростью, большей нуля, на ехр(-mu>2/2kT).

Это верно не только для произвольной высоты 0, но и для любой другой высоты, поэтому распределение по скоростям одинаково повсюду!(Окончательный результат не включает высоты h, она появляется только в промежуточных рассужде­ниях.) Это общая теорема о распределении по скоростям. В ней утверждается, что если в столбе газа просверлить крохот­ную дырочку, ну совсем малюсенькую, так что столкновения там будут редки и длина пробега молекул между столкнове­ниями будет много больше диаметра дырочки, то молекулы будут вылетать из нее с разными скоростями, но доля частиц, вылетающих со скоростью, превышающей и, равна ехр(-mu>2/2kT).

Теперь вернемся к вопросу о том, можно ли пренебрегать столкновениями. Почему это не имеет значения? Мы могли бы повторить все наши доводы, используя не конечную высоту h, а бесконечно малую высоту h, столь малую, что для столкнове­ний между высотами 0 и hбыло бы слишком мало места. Но это не обязательно: наши доводы, очевидно, основаны лишь на анализе значений энергий и на сохранении энергии; при столкновениях же происходит обмен энергиями среди молекул. Но нам довольно безразлично, следим ли мы за одной и той же молекулой, раз происходит лишь обмен энергиями с другой молекулой. И получается, что если мы даже сделаем это доста­точно тщательно (а такую работу тщательно проделать, конечно, труднее), то результат будет тот же.