Лекции по физике 4 (Фейнман) - страница 31

С помощью данных табл. 40.1 можно установить, что при 100°С, а это равно 373˚К (абсолютной температуры), kTмного меньше колебательной энергии молекул кислорода и водорода, но сравнимо с колебательной энергией иода. При­чина такой разницы в том, что атомы иода гораздо тяжелее атомов водорода и, хотя силы, действующие менаду атомами иода и водорода, сравнимы, молекула иода столь тяжела, что собственная частота ее колебаний чрезвычайно мала по срав­нению с собственной частотой водорода. При комнатной тем­пературе kTтаково, что hwводорода больше kT, а hw иода — меньше. Поэтому классическую колебательную энергию можно обнаружить только у иода.

Если увеличивать температуру газа, начав с очень малых значений Т, когда почти все молекулы находятся в их низшем состоянии, то появляется ощутимая вероятность найти моле­кулу во втором состоянии, затем в следующем за ним и т. д. Когда много состояний получают заметную вероятность, газ ведет себя более или менее так, как того требует классическая физика, ведь в этом случае систему квантовых состояний труд­но отличить от непрерывного распределения энергии, и система может обладать почти любой энергией. Таким образом, при повышении температуры мы снова попадаем в область класси­ческой физики, как это видно из фиг. 40.6. Аналогично можно показать, что точно так же квантуются и вращательные состояния атомов, но эти состояния размещены так тесно, что обычно kTбольше расстояния между уровнями. В этом случае возбуждено сразу много уровней и вращательная кинетиче­ская энергия системы ведет себя классически. Лишь водород при комнатных температурах ведет себя иначе.

Это первый случай, когда из сравнения с экспериментом обнаружилось, что с классической физикой что-то неблагополуч­но, мы искали способы уладить все трудности в квантовой механике тем самым путем, каким это происходило на самом деле. Прошло примерно лет 30 или 40, пока не была обнаружена еще одна трудность, и снова в статистической механике, но на этот раз в механике фотонного газа. Новая задача была решена Планком в первые годы нашего столетия.


* Чтобы вычислить этот интеграл, положим


Тогда


а это двойной интеграл в xy-плоскости. Но его можно вычислить и в полярных координатах:

 

 

Глава 41

БРОУНОВСКОЕ ДВИЖЕНИЕ

§ 1. Равнораспре­деление энергии

§ 2. Тепловое равновесие излучения

§ 3. Равномерное распределение и квантовый осциллятор

§ 4. Случайные блуждания

§ 1. Равнораспределение энергии

Броуновское движение открыл в 1827 г. ботаник Роберт Броун. Изучая жизнь под мик­роскопом, он заметил, что мельчайшие частицы цветочной пыльцы пляшут в его поле зрения; в то же время он был достаточно сведущ, чтобы понимать, что перед ним не живые существа, а просто плавающие в воде сорин­ки. Чтобы окончательно доказать, что это не живые существа, Броун разыскал обло­мок кварца, внутри которого была заполнен­ная водой полость. Вода попала туда много миллионов лет назад, но и в такой воде со­ринки все продолжали свою пляску. Казалось, что очень мелкие частицы пляшут непрерывно. Позднее было доказано, что это один из эффектов