Солнечный луч (Барабой) - страница 51

Есть еще одна важная характеристика света, на которую свойства вещества не влияют. Это так называемая частота колебаний. Чем меньше длина волны, тем больше ее частота, т. е. количество колебаний в единицу времени. Частота световых колебаний , где с — скорость света; — длина волны. Для оранжевого цвета, например, с длиной волны 6000 А имеем:  = 0,5·10>15 гц. Очевидно, именно частота в наибольшей степени характеризует то качество лучей, которое воспринимается человеком как ощущение цвета.

Воззрения на природу света развивались по мере прогресса науки. Первое общее представление о свете пытался сформулировать Декарт. Описывая общую механическую картину мира, Декарт предположил, что свет представляет собою мгновенную передачу давления от источника света через эфир — среду тонкого строения, заполняющую все мировое пространство. В отличие от Декарта, голландский ученый X. Гюйгенс представлял себе распространение света как процесс упругих колебаний мирового эфира, без быстрого перемещения его частиц. Однако волновая теория света Гюйгенса была недостаточно разработана. Ее дальнейшему развитию помешала популярность выдвинутой Ньютоном теории корпускулярной природы света.

Ньютон предполагал, что в процессе излучения света нагретое тело отдает часть своего вещества, частицы которого (корпускулы) несутся прямолинейно во все стороны с огромной скоростью, вызывая попеременные разрежения и сжатия эфира. Этим он пытался объяснить образование описанных выше колец. Ньютон не противопоставлял свою теорию волновой, но его последователи и ученики превратили корпускулярную теорию в антипод волновой. На протяжении почти 200 лет в науке господствовала корпускулярная теория света. Однако к концу XIX в. в физике накопилось немало фактов, объяснить и понять которые можно было только исходя из признания волновой природы света.

Прежде всего это относится к явлению дифракции света. Встречающиеся в природе волны способны при определенных условиях огибать препятствие, заходить в область тени. При этом, чем меньше размер препятствия, тем легче огибает его волна. Когда длина волны и размер препятствия становятся соизмеримыми, волна как бы «не замечает» преграды. Способность волн огибать препятствия и получила название дифракции волн. Отсутствие дифракции света в обыденных наблюдениях может иметь следующее объяснение: либо свет — процесс не волновой, а корпускулярный (частицы, как известно, движутся прямолинейно), либо длина волны света столь мала, что наблюдаемые предметы неизмеримо велики по сравнению с нею.