Кибернетика функциональных систем (Анохин) - страница 11

Можно с достоверностью утверждать, что вся вегетативная жизнь развитого организма “вписана” в целую систему таких устойчивых пар, в которой колебания неустойчивого компонента — эффекта — ограничиваются и направляются исключительно постоянным и императивным требованием другого компонентарецептора функциональной системы.

Следовательно, классическое, ставшее уже ходячим выражение К. Бернара “постоянство внутренней среды организма” в настоящее время должно быть понимаемо несколько иначе. Как можно видеть из предыдущего, само “постоянство среды” является вынужденной функцией от истинного постоянства рецепторных аппаратов функциональных систем организма. Эти рецепторные аппараты благодаря их неизменяемому врожденному специфическому метаболизму и многообразным пластическим связям с рабочими аппаратами имеют неограниченные возможности выравнивать приспособительный эффект системы.

Итак, “заданное” конструктором чувствительное устройство в автоматике в случае организма представлено наследственно закрепленными свойствами метаболизма соответствующих рецепторных аппаратов, которые имеют высокую специфическую чувствительность к определенному физиологическому фактору, представля-

Рис. 2. Схема комплексных соотношений приспособительного эффекта системы (ЭФ) и аппарата, точно рецептирующего этот конечный эффект (РР).

На схеме видно, как эта консервативная пара процессов пластично управляет постоянством конечного приспособительного эффекта.

ющему собой рабочий эффект данной функциональной системы. Все эти соотношения можно представить специальной схемой, принципиально общей для всех видов саморегуляций как в организме, так и в машинных устройствах (рис. 2).

3. АФФЕРЕНТНЫЙ СИНТЕЗ

Рассматривая рабочий эффект системы как нечно данное с самого начала, мы лишь сопоставляли его со специфическими свойствами рецепции, которая специально настроена на этот эффект.

Следовательно, эффекторная регуляторная сигнализация, которая рождается из контакта эффекта и рецептора, предполагалась нами всегда как функция от рецептирования какого-либо одного гомогенного фактора (осмотическое давление, сахар крови и т.д.).

Однако в действительности и особенно в сложных функциональных системах с дополнительными циклами регуляции эти отношения могут быть не такими простыми. Для примера можно взять функциональную систему дыхания.

Каждый ритмический выброс эффекторных возбуждений на диафрагмальный нерв или межреберные нервы не случаен. Количество одиночных нервных возбуждений в каждом залпе точно отражает потребность организма в кислороде на данный момент в зависимости от соотношения его концентрации к концентрации С0