Величие Вавилона. История древней цивилизации Междуречья (Саггс) - страница 285

Что касается уровня вавилонских математических достижений старовавилонского периода (ок. 1800 до н. э.), Нойгебауэр сравнивает его с ранним Ренессансом. В основном речь шла об алгебре, но уже были известны свойства элементарных последовательностей, таких как арифметическая и геометрическая прогрессия, а также некоторые геометрические отношения. Сегодня ясно, что сущность того, что мы называем теоремой Пифагора – в прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов, – было известно уже в Вавилоне. Правда, нет никаких доказательств того, что вавилоняне могли доказать эту теорему. Хотя некоторые авторы считают, что одна старовавилонская табличка, покрытая геометрическими чертежами (см. фото 34 и 35), связана с теоретическим доказательством отношения между площадями разных фигур, вавилонская математика (как и вся вавилонская наука) по большей части основывалась на эмпирических знаниях, а не на формальных доказательствах. Величина числа π была известна очень точно – 3 1/8, то есть с точностью до 0,6 процента. Этому можно противопоставить ситуацию в Израиле во времена Соломона, то есть тысячелетием позже, где число π считали равным 3. Квадратные уравнения, включающие элементы до восьмой степени, были хорошо известны, и, как уже отмечалось, существовали таблицы квадратных и кубических корней.

Далее следует краткое описание двух простых примеров старовавилонских задач. Первый пример – квадратное уравнение. Вначале приводится дословный перевод, затем (надеюсь) достаточные объяснения, чтобы сделать их понятными для читателей, когда-то изучавших элементарную алгебру.

Я добавил площадь поверхности и сторону квадрата: 45′

Ты должен записать 1, единицу.

Тебе следует разбить ее на половины: 30′

Тебе следует привести к общему знаменателю 30′ и 30′ : 15′

Тебе следует добавить 15′ к 45′ : 1

Это квадрат 1

Ты должен вычесть 30′, которое ты умножил на себя, из 1 : 30′, сторона квадрата.

Если учесть, что в математических задачах использовалась шестидесятеричная система, становится понятнее.

Тогда 45′ – это 45 / 60 = 3/4, 30′ – это 30 / 60 = 1/2, а 15′ – это 15 / 60 = 1/4. Подсчеты можно выполнить следующим образом:

Площадь квадрата плюс сторона квадрата = 3/4.

Возьмем коэффициент (линейных измерений) 1.

Половина коэффициента = 1/2

Квадратный корень из 1/2 = 1/4

1/4 + 3/4 = 1

Квадратный корень из 1 = 1

1 – 1/2 = 1/2

В современных символах процесс можно изобразить следующим образом:



(Вавилонские математики не занимались отрицательными значениями числа x.)

Старовавилонская табличка, касающаяся геометрических отношений, показана на фото 34 и 35. Текст разделен на части, каждая из которых состоит из фигуры и описания. Очевидно, студенту предлагалось посчитать площадь разных фигур. В одной части изображено следующее: