Загадки и диковинки в мире чисел (Перельман) - страница 19

«Второй способ деления называется в Венеции [13] лодкой или галерой, вследствие некоторого сходства фигуры, получающейся при этом, потому что при делении некоторых родов чисел составляется фигура, похожая на лодку, а в других на галеру, которая в самом деле красиво выглядит; галера получается иной раз хорошо отделанная и снабженная всеми принадлежностями – выкладывается из чисел так, что она действительно представляется в виде галеры с кормою и носом, мачтою, парусами и веслами»…

Читается это очень весело: так и настраиваешься скользить по числовому морю на парусах арифметической галеры. Но хотя старинный итальянский математик и рекомендует этот способ как – «самый изящный, самый легкий, самый верный, самый употребительный и самый общий из существующих, пригодный для деления всех возможных чисел», – все же я не решаюсь его изложить здесь, опасаясь, что даже терпеливый читатель закроет книгу в этом скучном месте и не станет читать дальше. Между тем этот утомительный способ действительно был самым лучшим в ту эпоху, а у нас в России употреблялся до середины XVIII века: в «Арифметике» Магницкого он описан в числе шести предлагаемых там способов (из которых ни один не похож на современный) и особенно рекомендуется автором; Магницкий на протяжении своей объемистой книги – 640 страниц огромного формата – пользуется исключительно «способом галеры», хотя и не употребляет этого наименования.

В заключение покажем читателю эту числовую «галеру», воспользовавшись примером из упомянутой книги Тартальи:

Мудрый обычай старины

Добравшись после утомительных трудов до желанного конца арифметического действия, предки наши считали необходимым непременно проверить этот в поте лица добытый итог. Громоздкие приемы вызывали естественное недоверие к их результатам. На длинном, извилистом пути легче заблудиться, чем на прямой дороге современных приемов. Отсюда естественно возник старинный обычай проверять каждое выполняемое арифметическое действие – похвальное правило, следовать которому не мешало бы и нам.

Любимым приемом проверки был так называемый способ 9, – очень изящный прием, который полезно и теперь знать каждому. Он нередко описывается в современных арифметических учебниках, особенно иностранных, но почему-то теперь малоупотребителен на практике, что, впрочем, не умаляет его достоинств.

Проверка девяткой основана на «законе остатков», гласящем: остаток от деления суммы на какое-либо число равен сумме остатков от деления каждого слагаемого на то же число; точно так же, остаток произведения равен произведению остатков множителей. С другой стороны, известно также [14] , что при делении числа на 9 получается тот же остаток, что и при делении на 9 суммы цифр этого числа; например, 758 при делении на 9 дает 2, и столько же получается в остатке от деления (7 + 5 + 8) на 9. Сопоставив оба свойства чисел, мы и приходим к приему проверки девяткой, т. е. делением на 9.