Разведка далеких планет (Сурдин) - страница 89

Астрономический климат? Оказывается, есть и такой!

Астроклимат

Так называют совокупность атмосферных условий, влияющих на качество астрономических наблюдений. Важнейшие из них – прозрачность воздуха, степень его однородности (влияющая на четкость изображения объектов), величина фонового свечения атмосферы, суточные перепады температуры и сила ветра.

Напомню: астрономические наблюдения производятся со дна воздушного океана. Уже говорилось, что, будучи сжата до плотности воды, наша атмосфера имела бы толщину 10 метров! В море с такой глубины звезды практически не видны. К счастью, наша атмосфера прозрачнее морской воды и позволяет нам видеть Вселенную. Но волнение воздушного океана, плавающие в нем облака и пыль, свечение газов и поглощение ими света звезд – все это вынуждает астрономов стремиться к «всплытию», к продвижению в верхние слои атмосферы.

Строительство обсерваторий высоко в горах, размещение телескопов на самолетах, аэростатах и, наконец, на борту космических аппаратов позволяет в той или иной степени избежать вредного влияния атмосферы, но создает новые трудности, прежде всего финансовые. Особенно дорогостоящи космические обсерватории, поэтому, за редким исключением, они создаются для наблюдения тех видов излучения, которые совершенно не проходят сквозь атмосферу к поверхности Земли, например рентгеновского или далекого инфракрасного. Для наблюдения в оптическом диапазоне астрономы до сих пор размещают большую часть своих приборов на поверхности Земли, но при этом стараются выбирать место и создавать условия, максимально выгодные для наблюдений.

Прозрачность атмосферы. В оптическом диапазоне прозрачность земной атмосферы достаточно велика: свет звезды, находящейся в зените, при наблюдении с уровня моря ослабевает на 25–50 % (меньше – у красного, больше – у голубого конца спектра), а с высоты современной горной обсерватории (2500–3000 м) в среднем на 20 %. Но атмосферное поглощение меняется в зависимости от высоты светила над горизонтом. При наблюдении звезды в зените луч света проходит минимальный путь сквозь атмосферу и поэтому испытывает минимальное поглощение. Чем больше угловое расстояние звезды от зенита, тем длиннее путь луча в атмосфере и, соответственно, сильнее ослабление света.

Для того чтобы исправить наблюдаемую яркость светила в визуальном диапазоне спектра за дополнительное поглощение света в атмосфере (как говорят, «привести наблюдения к зениту»), нужно от наблюдаемой звездной величины отнять Δm:

Эти поправки даны для наблюдателя на уровне моря; с увеличением высоты места они уменьшаются. При этом имеется в виду, что качество неба отличное. При худшем качестве неба (высокая влажность или запыленность, перистые облака) поправка становится всё больше и неопределеннее, особенно вблизи горизонта.