Вселенная в электроне (Барашенков) - страница 14

Скептики шутят, что поиск новых элементов напоминает ловлю черной кошки в темной комнате, когда неизвестно, сидит она там или давно уже сбежала. И тем не менее найдено уже 109 достоверно подтвержденных элементов!

Могут спросить: а зачем это нужно? Ну будет изготовлен (синтезирован, как говорят физики) еще один элемент, живущий сотую долю секунды? Дорогостоящий научный спорт, погоня за рекордами?

Расчеты говорят, что в окрестностях 112-й клетки таблицы Менделеева, по-видимому, существует «остров стабильности». Внутриядерные частицы собираются там в особо устойчивые группы. Такое иногда бывает — добавляется в нужных местах несколько подпорок, и разваливающаяся конструкция становится вдруг устойчивой. Но больше добавить нельзя — упадет.

Как долго живут сверхтяжелые ядра на «острове стабильности», точно неизвестно. Возможно, годы или десятки тысяч лет, как плутоний, а может, найдутся такие, которые вообще не будут распадаться. Такие ядра были бы прекрасным ядерным горючим. Они на пределе устойчивости, поэтому стоит задеть их слегка нейтрону в атомном реакторе, как они распадутся с выделением большой энергии. Концентрированное топливо для звездолетов, компактные атомные батареи для судов и самолетов да мало ли что еще! Исследования продолжаются.

Однако не только остров стабильности манит ученых. В природе нет ядер, которые состояли бы только из одних нейтронов. Если известные нам стабильные ядра нагружать нейтронами, они становятся неустойчивыми. Но это — когда нейтронов мало. Если собрать вместе сразу много десятков нейтронов, то такие нейтронные капли, возможно, станут устойчивыми и не будут распадаться. У теоретиков есть некоторые основания так думать.

Интересно, какими свойствами будет обладать нейтронное вещество? Может, на этом пути удастся создать аккумуляторы нейтронов и сверхпрочную нейтронную броню — непробиваемую защиту от любых излучений?

Вокруг таблицы Менделеева уйма интересных дел и заманчивых возможностей.

Брызги материи

Полвека назад, перед второй мировой войной, физики знали шесть частиц. Четыре основных частицы-кирпичика: протон, нейтрон, электрон, позитрон, и две вспомогательных частицы-воланчика: фотон и мезон.

Кстати, с мезоном произошла занятная путаница. Когда его обнаружили в космических лучах, физиков удивило, насколько легко он проходил сквозь толстые железные и свинцовые болванки. Оставалось загадкой, каким образом столь слабо взаимодействующая частица может связывать протоны и нейтроны в ядрах. Ответ был найден уже после войны. Оказалось, что существуют два вида мезонов: один — слабовзаимодействующая, похожая на электрон частица, ее-то и открыли в предвоенные годы, а другой — предсказанный Юкава несколько более тяжелый, сильновзаимодействующий мезон. Физиков сбила с толку близость масс этих частиц. Чтобы их различать, им в качестве ярлыка-этикетки присвоили греческие буквы μ (мю) и π (пи) и стали называть мю- и пи- мезонами.