Вернемся к гипотезе о кварк-глюонном родстве. Теория Салама и Пати была первой разведкой в этом направлении. Как говорил Гете, смелые мысли подобны передовым шашкам в игре — они гибнут, но обеспечивают победу! Сегодня физики отдают предпочтение другим, более совершенным вариантам теории. Но все они обладают общим недостатком: их предсказания и выводы можно проверить лишь при очень высоких энергиях, в миллиарды раз превосходящих то, что дают современные ускорители. Энергии космических частиц для этого также недостаточно. Даже у самых быстрых из них энергия в сотни раз меньше того, что нужно.
Казалось бы, кварк-лептонным теориям уготована участь пылиться в дальнем ящике письменного стола теоретиков. Есть такие теории, о которых говорят, что они «из области фантастики и, может, даже не научной»!
К счастью, природа оставила маленькую, как замочная скважина, щелку, через которую уже сегодня можно заглянуть в край сверхвысоких энергий.
В теориях, основанных на кровном родстве лептонов и кварков, пчелки-глюоны, перенося цветовую «пыльцу», могут сделать красный, синий или желтый цветок белым, то есть превратить его в лептон. Составная частица адрона, внутри которого произошло такое превращение — например протон, — сразу же распадется, поскольку частиц, состоящих из смеси лептонов и кварков, в природе нет. Подобной радиоактивности протона нет ни в одной другой теории, поэтому если ее обнаружат на опыте, это будет убедительным доказательством того, что лептоны и кварки — близкие родственники.
Правда, вывод о радиоактивности протона несколько пугает. Получается, что радиоактивно и с течением времени должно распасться все — все атомы мира. Оптимистической такую перспективу не назовешь!
Однако опасаться нам нечего. Расчет говорит, что протоны распадаются крайне редко. В стакане воды один распад происходит за десять тысяч лет, а чтобы распадалось по одному протону в сутки, нужен большой пруд, объемом со школьный спортзал. В теле человека за всю его жизнь, от рождения до смерти, в среднем распадается не более одного протона. Как видно, потери невелики. Пройдет неисчислимое количество лет, прежде чем убыль атомов в мире станет заметной.
Как же обнаружить такие сверхредкие события?
Прежде всего заметим, что у протона — положительный электрический заряд, поэтому при его распаде должна обязательно образоваться какая-то положительно заряженная частица, она распадается на более легкие частицы и так далее до тех пор, пока не образуется позитрон, которому распадаться больше уже не на что. Двигаясь в веществе, он столкнется с одним из атомных электронов и превратится (аннигилирует) в кванты света. Эти искорки света — сигналы о происшедших в веществе «протонных катастрофах». Засечь их труднее, чем найти иголку в стоге сена. Приходится наблюдать сразу за очень большим числом протонов, для чего используют огромные объемы прозрачной жидкости — иногда тысячи или даже десятки тысяч тонн — и много высокочувствительных детекторов света. Это можно сравнить с сетчатыми глазами гигантской стрекозы, застывшей в ожидании добычи. Чтобы исключить фон космических лучей, где есть свои позитроны, измерения выполняют глубоко под землей, например, в шахте для добычи золота в Южной Америке глубиной три километра или у нас на Кавказе в толще гор. А для того чтобы долгожданные искорки протонных распадов не затерялись в хаосе всевозможных случайных помех, применяются сложные системы электронной фильтрации регистрируемых сигналов.