Нанотехнологии. Правда и вымысел (Балабанов, Балабанов) - страница 63

5. Наиболее рационально получать нанодисперсные порошки тугоплавких металлов (W, Mo, Ni) и их соединений (карбидов, нитридов и др.) плазмохимическим методом, представляющим собой восстановление металлов из их соединений под действием восстанавливающих газов. Электрической дугой высокой интенсивности в плазмотроне поддерживается плазма с температурой до 10 000 °C. При такой температуре в плазме, через которую пропускают газообразный восстановитель (водород или углеводороды и конвертированный природный газ), исходный материал расплавляется, а затем конденсируется в твердую дисперсную фазу.

Для получения фуллеренов оптимальным материалом является графит, поскольку он сам изначально имеет много общего со структурой фуллеренов. Однако в настоящее время ведутся интенсивные поиски и других способов синтеза, в которых исходным сырьем служат, например, смолистые остатки пиролиза углеродсодержащих материалов, нафталина и ряда других материалов.

В таблице 6 представлены наиболее распространенные способы получения наноматериалов.

Таблица 6. Основные способы получения наноматериалов

Известны работы, в которых электрическую дугу между электродами пропускают в среде растворителя – толуола и бензола. При этом, как показывает последующий масс-спектрометрический анализ, растворитель заполняется кластерами углерода с числом атомов, меняющимся от 4 до 76.

Газофазный метод (при 4000 °C и выше), обычно используемый для получения фуллерена С60СНТ, годится только для «гостевых» молекул, которые термически стабильны и могут подвергаться сублимации или испарению.

Наиболее эффективный способ получения фуллеренов основан на термическом разложении графита. Используется как электролитический нагрев графитового электрода, так и лазерное облучение поверхности графита. На рис. 24 показана простейшая схема установки для получения фуллеренов, предложенная В. Кречмером.

Рис. 24. Простейшая схема установки для получения фуллеренов: 1 – графитовые электроды; 2 – охлаждаемые медные шины; 3 – медный корпус; 4 – упругие пластины (пружины)

Распыление графита осуществляется при пропускании через его электроды 1, расположенные на охлаждаемых шинах 2 тока с частотой 60 Гц, силой тока от 100 до 200 А и напряжением 10–20 В. Регулируя натяжение пружин 4, можно добиться, чтобы основная часть подводимой мощности выделялась в дуге, а не в графитовом стержне. Камера заполняется гелием с давлением 100 торр (то же, что 1 мм рт. ст.). Эффективность испарения графита в установке может достигать 10 г/В. При этом поверхность медного корпуса 3, охлаждаемого водой, покрывается продуктом испарения графита, то есть графитовой сажей. Если получаемый порошок соскоблить и выдержать в течение нескольких часов в кипящем толуоле, получится темно-бурая жидкость. При выпаривании ее во вращающемся испарителе образуется мелкодисперсный порошок. Его масса составляет не более 10 % массы исходной графитовой сажи. В порошке содержится до 10 % фуллеренов С60 (90 %) и С70 (10 %). Этот метод получил название «фуллереновая дуга».