Нанотехнологии. Правда и вымысел (Балабанов, Балабанов) - страница 81

Доля атомов в поверхностном слое (толщиной около 1 нм), естественно, растет с уменьшением размера частиц вещества. Поверхностные атомы обладают свойствами, отличающимися от «внутренних» атомов, поскольку они связаны с соседями иначе, чем внутри вещества. В результате на поверхности велика вероятность протекания процессов атомной реконструкции, изменения структурного расположения атомов и их свойств.

Атомы, расположенные по краям моноатомных террас, уступов и впадин на них, где координационные числа значительно ниже, чем в объеме, находятся в совершенно особых условиях.

Рис. 39. Изменение физико-химических характеристик материала (ФХХМ) в зависимости от размера структуры: 1 – с максимумом; 2 – с насыщением; 3 – с осциллирующим изменением свойств

Взаимодействие электронов со свободной поверхностью порождает специфические приповерхностные состояния, именуемые уровнями Тамма. Все это заставляет рассматривать поверхность (или межфазную границу) как некое новое состояние вещества.

Работы русского физика Игоря Евгеньевича Тамма, удостоенного с коллегами Нобелевской премии по физике в 1958 году, были посвящены классической электродинамике, квантовой механике, теории твердого тела, физической оптике, ядерной физике, теории элементарных частиц, проблемам термоядерного синтеза. В 1930 году Тамм построил квантовую теорию рассеяния света в кристаллах, впервые произвел квантование акустических волн, введя понятие фононов – звуковых квантов.

Учитывая абсолютные размеры наночастиц с определенными допущениями, можно считать, что наночастица представляет собой вещество, близкое по свойствам к межфазной границе. Например, нанотрубки имеют аномально высокую удельную плотность поверхности, поскольку вся их масса сосредоточена в поверхностном слое. Кроме того, расстояние между графитовыми слоями в многослойных системах (0,335 нм) оказывается достаточным, чтобы некоторые вещества в атомарном виде (например, молекулы водорода Н2) могли заполнять их межстенное пространство. Данное пространство (в совокупности с внутренними каналами и даже внешней поверхностью) образует уникальную емкость для хранения газообразных, жидких и даже твердых веществ.

Наполнение внутренней поверхности нанотрубок происходит в результате капиллярных явлений. Впервые капиллярные эффекты в нанотрубках были обнаружены во время эксперимента, при котором фуллереновую дугу, предназначенную для синтеза нанотрубок, зажигали между электродами диаметром 0,8 см и длиной 15 см при напряжении 30 В и силе тока 180–200 А. В результате термического разрушения поверхности графитового анода на катоде образовывался слой материала высотой 3–4 см, его извлекали из камеры и выдерживали в течение 5 ч при температуре 850 °C в потоке углекислого газа. Эта операция, в результате которой образец терял около 10 % массы, способствовала очистке образца от частиц аморфного графита и обнаружению в осадке нанотрубок. Центральную часть осадка, содержащего нанотрубки, помещали в этанол и обрабатывали ультразвуком. Диспергированный в хлороформе продукт окисления наносили на углеродную ленту с отверстиями для наблюдения с помощью электронного микроскопа. Трубки, не подвергавшиеся обработке, имели бесшовную структуру, головки правильной формы и диаметр от 0,8 до 10 нм. В результате окисления вершины около 10 % нанотрубок были повреждены, часть слоев вблизи них также была содрана.